
MapleMBSE Virtual Features Guide

Copyright © Maplesoft, a division of Waterloo Maple Inc.
2019

MapleMBSE Virtual Features Guide

Contents
Preface .. ix
1 Introduction ... 1

1.1 Scope and Purpose of this Document .. 1
1.2 Prequisite Knowledge .. 1
1.3 Motivation for Using MapleMBSE Virtual Features 1
1.4 Importing the MapleMBSE Ecore .. 3
1.5 General Syntax for the MapleMBSE Virtual Features 3
1.6 List of Virtual Features .. 4

2 Stereotypes .. 5
2.1 metaclassName .. 5

Description .. 5
Syntax .. 5
Using the metaclassName Virtual Feature .. 5
Example .. 6

2.2 featureName .. 6
Description .. 6
Syntax .. 7
Using the featureName Virtual Feature .. 7
Example .. 8

3 Associations ... 11
3.1 associatedProperty .. 11

Description .. 11
Syntax .. 11
Using the associatedProperty Virtual Feature .. 12
Example .. 13

3.2 directedAssociatedProperty ... 14
Description .. 14
Syntax .. 14
Using the directAssociatedProperty Virtual Feature 14
Example .. 15

3.3 otherAssociatedEnd ... 16
Description .. 16
Syntax .. 16
Using the otherAssociatedEnd Virtual Feature .. 16
Example .. 17

4 Connectors ... 21
4.1 connectedPropertyOrPort ... 21

Description .. 21
Syntax .. 21
Using the connectedPropertyOrPort virtual feature 22
Example .. 22

iii

4.2 otherConnectorEnd ... 23
Description .. 23
Syntax .. 23
Using the otherConnectorEnd Virtual Feature ... 23
Example .. 23

5 Dependencies ... 25
5.1 clientDependencies ... 25

Description .. 25
Syntax .. 25
Using the clientDependencies Virtual Feature ... 25
Example .. 25

5.2 supplierDependencies .. 26
Description .. 26
Syntax .. 27
Using the supplierDependencies Virtual Feature .. 27
Example .. 28

6 Enumeration ... 29
6.1 EnumerationName .. 29

Description .. 29
Syntax .. 29
Using the VertexTransition Virtual Feature ... 29
Example .. 30

6.2 EnumerationLabel ... 30
Description .. 30
Syntax .. 30

7 Util ... 33
7.1 multiplicityProperty .. 33

Description .. 33
Syntax .. 33
Using the multiplicityProperty Virtual Feature .. 33
Example .. 34

8 Activity Diagrams ... 35
8.1 ActivityControlFlow .. 35

Description .. 35
Syntax .. 35
Using the ActivityControlFlow Virtual Feature ... 35
Example .. 36

8.2 ActivityObjectFlow ... 37
Description .. 37
Syntax .. 37
Using the ActivityObjectFlow Virtual Feature .. 37
Example .. 38

9 StateMachines .. 39

iv • Contents

9.1 VertexTransition ... 39
Description .. 39
Syntax .. 39
Using the VertexTransition Virtual Feature ... 39
Example .. 40

Contents • v

vi • Contents

List of Figures
Figure 2.1: metaclassName Example ... 6
Figure 2.2: A The appliedStereotypeInstance Structure ... 7
Figure 2.3: featureName Example ... 8
Figure 3.1: associatedProperty Example ... 13
Figure 3.2: directAssociatedProperty Example ... 15
Figure 3.3: otherAssociatedEnd Example .. 18
Figure 4.1: connectedPropertyOrPort Example .. 22
Figure 4.2: otherConnectorEnd Example .. 24
Figure 5.1: clientDependencies Example .. 26
Figure 5.2: supplierDependencies Example ... 28
Figure 7.1: multiplicityProperty Example ... 34
Figure 8.1: ActivityControlFlow Example .. 36
Figure 8.2: ActivityObjectFlow Example .. 38
Figure 9.1: VertexTransition Example .. 40

vii

viii • List of Figures

Preface
MapleMBSE Overview
MapleMBSE™ gives an intuitive, spreadsheet based user interface for entering detailed
system design definitions, which include structures, behaviors, requirements, and parametric
constraints.

Related Products
MapleMBSE 2019 requires the following products.

• Microsoft® Excel® 2010 Service Pack 2, Excel 2016 or Excel 2019.

• Oracle® Java® SE Runtime Environment 8.

Note:MapleMBSE looks for a Java Runtime Environment in the following order:

1) If you use the -vm option specified in OSGiBridge.init (not specified by default),
MapleMBSE will use it.

2) If your environment has a system JRE (meaning either: JREs specifed by the environment
variables JRE_HOME and JAVA_HOME in this order, or a JRE specified by the Windows
Registry (created by JRE installer)), MapleMBSE will use it.

3) The JRE installed in the MapleMBSE installation directory.

If you are using IBM® Rational® Rhapsody® with MapleMBSE, the following versions
are supported:

• Rational Rhapsody Version 8.1.5

• Teamwork CloudTM server 18.5 SP3 or 19.0 SP2

Note that the architecture of the supported non-server products (that is, 32-bit or 64-bit)
must match the architecture of your MapleMBSE architecture.

ix

Related Resources
DescriptionResource

System requirements and installation instructions for
MapleMBSE. TheMapleMBSE Installation Guide is available
in the Install.html file located either on your MapleMBSE
installation DVD or the folder where you installed MapleMBSE.

MapleMBSE Installation
Guide

Applications in this directory provide a hands on demonstration
of how to edit and construct models using MapleMBSE. They,
along with an accompanying guide, are located in the Application
subdirectory of your MapleMBSE installation.

MapleMBSE Applications

This guide provides detailed instructions on working with
configuration files and the configuration file language.

MapleMBSEConfiguration
Guide

Instructions for using MapleMBSE software. TheMapleMBSE
User Guide is available in the folder where you installed
MapleMBSE.

MapleMBSE User Guide

For additional resources, visit http://www.maplesoft.com/site_resources.

Getting Help

To request customer support or technical support, visit http://www.maplesoft.com/support.

Customer Feedback

Maplesoft welcomes your feedback. For comments related to the MapleMBSE product
documentation, contact doc@maplesoft.com.

x • Preface

http://www.maplesoft.com/site_resources
http://www.maplesoft.com/support

1 Introduction
1.1 Scope and Purpose of this Document
The purpose of the MapleMBSE Virtual Features Guide is to describe MapleMBSE virtual
features and explain how to use them.

The intended audience for this document are users who are familar with UML, SysML and
Model-based Systems Engineering concepts andwho intend to create their ownMapleMBSE
configuration files.

1.2 Prequisite Knowledge
To fully understand the information presented in this document the reader should be famil-
iar with the following concepts:

• The Eclipse Modeling Framework ecore serialization. In particular, knowing how to
use any tool of your choice to track all the eReferences independently of the eSuperTypes
.

• Thus, some basic concepts of Meta Object Facilty like eClassifiers and eStructuralFea-
tures. A correct mse configuration file has within each qualifier a concrete UML eClas-
sifiers and each dimension should be accessed using a non-derived StructuralFeature
defined in the UML.ecore or a virtual one inside this guide.

• MapleMBSE Configuration Language elements, (especially dimension and qualifiers,
and the syntax for importing the MapleMBSE ecore). For more information on the
MapleMBSE Configuration language, see theMapleMBSE Configuration Guide.

1.3 Motivation for Using MapleMBSE Virtual Features
SysML provides a high level of abstraction to cover as manymodeling scenarios as possible
with the diagrams offered. It is a powerful and complex language that is extremely difficult
to master because of its complexity (there are hundreds of pages of technical specifications
for SysML).

Many different concrete and abstract Classifiers, with very specific semantics, are part of
the SysML technical specifications. These Classifiers should not be used interchangeably.
Even "linking" elements changes depending on the "linked" elements. For example, SysML
Associations are to Classes as Connectors are to Ports, or, what ControlFlows can be for
ActivityNodes. However, these elements are not interchangeable.

An end user, defined as a user who will be updating model information using the
MapleMBSE spreadsheet interface but likely will not be involved in creating or editing
configuration files, who interested in taking advantage of the modeling capabilities of
SysML, should not need to know its complexities.MapleMBSE helps to hide this complexity

1

from the end user, through virtual features. They are called virtual features because, although
they extend the capabilities of native SysML, they themselves are not part of SysML.

With the right choice of labels within an Excel template and a well designed configuration
(.mse) file that implements MapleMBSE virtual features, an end user can enter a couple of
inputs in a spreadsheet and create Blocks and the Associations linking them, or Ports and
Connectors, or other combinations of elements.

For example, consider the following code snippet from a MapleMBSE configuration file
in the figure below. This figure illustrates the scenario where a configuration file is designed
without the use of virtual features to represent SysML Associations between Blocks.

Notice in the generated Excel worksheet, the number of inputs required of the end user to
represent the Assocation between Customer and Product. This requires knowledge of
SysML on the part of the end user.

Now consider an example that represents the same Association between Customer and
Product, as shown in the figure below. This time, the configuration file is designed using
theMapleMBSE virtual features, specifically, the associatedProperty virtual feature. Notice,
the only inputs required of the end user are the two SysML Blocks,Customer and Product.
The cross-references need for the Association are completed automatically.

2 • 1 Introduction

1.4 Importing the MapleMBSE Ecore
Loading MapleMBSE virtual features is analogous to the way you would load UML
Structural Features using UML Ecore. The corresponding MapleMBSE Configuration lan-
guage uses import-ecore.

The general syntax is

import-ecore "URI"

For example, to specify the NoMagic ecore:

"http://www.nomagic.com/magicdraw/UML/2.5"

To specify the MapleMBSE ecore:

"http://maplembse.maplesoft.com/common/1.0"

You must create an alias for the ecore using the syntax:

import-ecore "URI" as Alias

For example, to specify an alias for the MapleMBSE ecore:

import-ecore "http://maplembse.maplesoft.com/common/1.0" as
mse

This allows you to use the short form, mse, instead of the whole syntax.

1.5 General Syntax for the MapleMBSE Virtual Features
The general syntax for the virtual features is

[./]?alias::virtualfeature

1.4 Importing the MapleMBSE Ecore • 3

The first character can be a dot, a forward slash, or a blank. There is no strict rule of thumb
for this. For specific syntax, see the Syntax subsection for each virtual feature.

alias - This is the alias for the ecore import

virtualfeature - This is the virtual feature name you want to use, for example, asso-
ciatedProperty.

1.6 List of Virtual Features
The MapleMBSE virtual features can be grouped into five categories:

Stereotypes (page 5). This group includes the metaclassName and featureName
virtual features.
Associations (page 11)This group includes theassociatedProperty,directAsso-
ciatedProperty, and otherAssociatedEnd virtual features.
Connectors (page 21)This group includes the connectedPropertyOrPort and
otherConnectorEnd virtual features.
Dependencies (page 25)This group includes theclientDependencies andsupplier-
Dependencies virtual features.
Util (page 33)This group includes the multiplicityProperty virtual feature.

4 • 1 Introduction

2 Stereotypes
SysML can be explained as a subset of elements defined in the UML specifications plus
some additional features not included in UML. One of these features is a Stereotype. Stereo-
types are applied to those elements adding extra meaning or modeling semantics.
MapleMBSE offers several virtual features to apply Stereotypes and navigate their extended
modeling capacities.

2.1 metaclassName
Description

Use themetaclassName virtual feature to apply Stereotypes while creating elements using
MapleMBSE. To use this virtual feature you need to identify the qualified name of the
Stereotype that you want to apply and whether the element is compatible with that stereotype.

Syntax

Any Element of theModel can have a list of appliedStereotype but only certain Stereotypes
should be applied to certain Element. This is one of the few virtual features that is used as
a filter inside the qualifier and it does not require a dot or slash notation prior to the alias.
ThemetaclassName virtual feature must be followed by an equals simbol and the qualified
name of the Stereotype between quotation mark.

alias::metaclassName="qualified::name"

It is important to note that this qualified name is basically a path and the name that identifies
uniquely each Stereotype, and each substring is concatenated with a double colon notation.

Using the metaclassName Virtual Feature

The following steps lllustrate what you need to do to use AssociatedProperty virtual feature:

1. The MapleMBSE ecore is imported and its alias is mse.

2. Two data-sources are used for this example with metaclassName to filter Blocks and
Requirements. Note: both of those SysML concept are UML Classes but with different
Stereotypes.

3. Defining synctable-schemas, one for Blocks and another for Requirements. Note:
To avoid problems with MapleMBSE it is a good practice to use the same qualifier and
Stereotype filter in the data-source and the first dimension of the schema.

4. Complete the rest of the configuration as usual:worksheet-templates,synctable
and workbook.

5

Example

The following example showcases how to use metaclassName to createClasses applying
2 different Stereotypes.

Figure 2.1: metaclassName Example

2.2 featureName
Description

As mentioned in the introduction of this section, once you applied a Stereotype to any Ele-
ment, you are changing its semantics and extending it. Use featureName to access those
extended properties stored in Slots using their qualified names.

The class diagram in Figure 2.2 (page 7) shows the different EClasses that need to be
queried in order to access those Slots, remember that Element is an abstract EClass and it
should not be used as the qualifier. Basically all elements in aModel implement Element,
thus EClasses like Class have the structural feature appliedStereotypeInstance to query In-
stanceSpecification.

6 • 2 Stereotypes

Figure 2.2: A The appliedStereotypeInstance Structure

Syntax

Use featureName the same way metaclassName is used within a qualifier as a filter,
meaning that no dot or slash notations are needed before the alias. It expected, follwing the
virtual feature, an equal symbol and a string between quotation marks; this string is the
qualified name of the property to access.

alias::featureName="qualified::name"

This qualified name is similar to the one used to identify the Stereotype but it differs slightly
at the end with an extra information concatenated to identity a single extension. Asmentioned
before this virtual feature is usable while querying a Slot inside a InstanceSpecification inside
an concrete Element, but you must also know that this Element must be filtered by meta-
className with the qualified name that identifies the Stereotype.

Using the featureName Virtual Feature

To access extra Properties added after applying a Stereotype:

1. Import the MapleMBSE ecore.

2. Inside a syntable-schema navigate to aMultiplicityElement, in this case, /ownedAt-
tribute[Property] within a Class.

3. Within that dimension, define a regular column using/mse::multiplicityProp-
erty.

4. Complete the rest of the configuration as usual: worksheet-templates, synctable and
workbook.

2.2 featureName • 7

Example

The following example illustrates how to access extra Properties added after applying a
Stereotype.

1. Import MapleMBSE ecore, for this example use mse as the alias.

2. Create a data-source using the metaclassName virtual feature mentioned before to
filter Requirements.

3. Define a synctable-schema for Requirements.Note: use the same qualifier and Stereotype
for the first dimension that for the data-source.

4. To access the SysML::Requirements::Requirement::Text Property added
to a Class after applying the Requirement Stereotype you must:

1. Navigate appliedStereotypeInstance to get an InstanceSpecification.

2. Then slot to recover all the Slots within the InstanceSpecification

3. UsefeatureNamewith the Slot qualifier to filter theProperty that youwant to access

Note: The qualified name of that Property is the name of the qualified Stereotype plus 2
colons and the name of the Property.
Stereotype: SysML::Requirements::Requirement
Property: SysML::Requirements::Requirement::Text

4. Complete the rest of the configuration as usual:worksheet-templates,synctable
and workbook.

Figure 2.3: featureName Example

8 • 2 Stereotypes

2.2 featureName • 9

10 • 2 Stereotypes

3 Associations
An Association between two Blocks creates cross references for two UML Classes with
SysML Block Stereotypes (<<block>>) to one Association using two properties and also
makes some cross references, like Type and Association, within those properties .

3.1 associatedProperty
Description

In MagicDraw, with a couple clicks from one block to another, all of these elements are
correctly created. Similarly in MapleMBSE, the associatedProperty virtual feature
provides the ability to connect two SysML Blocks, creating a bidirectional Association at
the same hierarchicallevel in the diagram as the source Block.

When MapleMBSE queries the model, the associatedProperty returns the target
Block (the Block that is related to a Property through an Association).

Syntax

The general syntax for using the associatedProperty virtual feature is as follows:

.alias::associatedProperty

Where alias is the alias you assigned to the MapleMBSE ecore. For more information
on assigning aliases, see Importing the MapleMBSE Ecore (page 3).

11

The associatedProperty virtual feature must be used when querying the Property
of a Block.

Using the associatedProperty Virtual Feature

The following example lllustrates what you need to do to use AssociatedProperty virtual
feature.

1. In line two, themaplembse ecore is imported with an alias.

2. Use an ownedAttribute[Property] as the queried dimension.

3. Make a reference-query to a class using mse::associatedProperty.

4. Complete the reference-decomposition.

12 • 3 Associations

Example

Figure 3.1: associatedProperty Example

3.1 associatedProperty • 13

3.2 directedAssociatedProperty
Description

To create Associationswith navigability in one directionMapleMBSE uses directedAssoci-
atedProperty, using this virtual feature links two Classes and adds a Property to the source
Block and other Property to an Association.
Based on the aggregation value we can use this virtual feature to create Association, Aggreg-
ation and Composition with direction.

Syntax

The general syntax for using the directedAssociatedProperty virtual feature is
as follows:

.alias::directedAssociatedProperty

Where alias is the alias you assigned to the MapleMBSE ecore (hyperlink to above).

The directedAssociatedProperty virtual feature must be used when querying the
Property of a Block.

Using the directAssociatedProperty Virtual Feature

The following example lllustrates what you need to do to use directedAssociated-
Property.

1. In line two, themaplembse ecore is imported with an alias.

2. Use an ownedAttribute[Property] as the queried dimension.

3. Make a reference-query to a class using mse::directedAssociatedProperty.

4. Complete the reference-decomposition.

14 • 3 Associations

Example

Figure 3.2: directAssociatedProperty Example

3.2 directedAssociatedProperty • 15

3.3 otherAssociatedEnd
Description

otherAssociationEnd is used in the case when two classifiers has to be linked and the inform-
ation about the properties of these classifiers are owned by the association and not the
classifiers themselves, such as in the case of UseCase diagram where assocaition exist
between an actor and usecase and these two classifiers does not own any property that
defines the other classifier.

Syntax

The general syntax for using the otherAssociationEnd virtual feature is as follows:

.alias::otherAssociationEnd

Where alias is the alias you assigned to the MapleMBSE ecore (hyperlink to above).

The otherAssociationEnd virtual feature must always be used when querying a Class
.

Using the otherAssociatedEnd Virtual Feature

The following example lllustrates what you need to do to use otherAssociationEnd.

1. In line two, themaplembse ecore is imported with an alias.

2. Use when a Class as the queried dimension.

3. Make a reference-query to a class using mse::otherAssociationEnd,unlike
other virtual features in this section otherAssociationEnd should not be used when a
property is querried.

4. Complete the reference-decomposition.

16 • 3 Associations

Example

3.3 otherAssociatedEnd • 17

Figure 3.3: otherAssociatedEnd Example

18 • 3 Associations

3.3 otherAssociatedEnd • 19

20 • 3 Associations

4 Connectors

A Connector is used to link ConnectableElements (for example, Ports or Properties) of a
Class through a ConnectorEnd. A Connector has two ConnectorEnds.

Based on the connection between Properties of a Class the connection can be of two types:
Delegation (connecting Ports or Properties from the system to Ports or Properties inside
a Class) or Assembly (connecting Ports or Properties within a Class).

4.1 connectedPropertyOrPort
Description

To achieve this connection MapleMBSE uses connectedPropertyOrPort virtual
feature.
The connectorPropertyOrPort virtual feature connects Ports or Properties of a
Class. It automatically detects the kind of relation required between the Properties being
connected and creates the appropriate connection.

WhenMapleMBSE queries themodel, the connectedPropertyOrProt return the list
of target properties.

Syntax

The general syntax for using the connectedPropertyOrPort virtual feature is as
follows:

.alias::connectedPropertyOrPort

Where the alias is alias you assigned to MapleMBSE ecore.

21

When the connection is created through connectedPropertyOrPort, the owner of
the connected Property is determined automatically byMapleMBSE, regardless of whether
this is a Delegation or Assembly type connection.

Using the connectedPropertyOrPort virtual feature

In general, to use the connectedPropertyOrPort virtual feature:

1. First, import the MapleMBSE ecore with alias

2. Use an ownedAttribute[Property] as the queried dimension.

3. Make a reference-query to a property using mse::connectedPropertyOrPort.

4. Complete the reference-decomposition.

Example

A specific example of how to use the ConnectedPropertyOrPort virtual feature is
shown below.

Figure 4.1: connectedPropertyOrPort Example

22 • 4 Connectors

4.2 otherConnectorEnd
Description

To achieve this connection MapleMBSE also use otherConnectorEnd virtual feature.
This virtual feature can connect between ports or properties of a class, otherCon-
nectorEnd automatically create the relation required between the properties being con-
nected and creates appropriate connection.

When MapleMBSE queries the model, the otherConnectorEnd return the list of con-
nectorEnds which is associated with the property.

Syntax

The general syntax for using the otherConnectorEnd virtual feature is as follows:

.alias::otherConnectorEnd

Where the alias is the alias you assigned to the MapleMBSE ecore.

When the connection is created using otherConnectorEnd, the owner of the connected
Property is determined automatically by MapleMBSE, regardless of whether this is a Del-
egation or Assembly type connection.

Using the otherConnectorEnd Virtual Feature

How to use the otherConnectorEnd virtual feature is shown in the example below:

1. First, import the MapleMBSE ecore with an appropriate alias

2. Use an ownedAttribute[Property] as the queried dimension.

3. Make a reference-query to a property using mse::otherConnectorEnd.

4. Complete the reference-decomposition.

Example

A specific example of how to use the otherConnectorEnd virtual feature is shown
below.

4.2 otherConnectorEnd • 23

Figure 4.2: otherConnectorEnd Example

24 • 4 Connectors

5 Dependencies
A Dependency is used between two model elements to represent a relationship where a
change in one element (the supplier element) results in a change to the other element (client
element).

A Dependency relation can be created between any namedElement. Different kinds of De-
pendencies can be created between the model elements such as Refine, Realization,
Trace,Abstraction etc.,

5.1 clientDependencies
Description

The clientDependencies virtual feature creates a relation between the client being
the dependent and supplier who provides further definition for the dependent.

Syntax

The general syntax for using the clientDependencies virtual feature is as follows:

/mse::clientDependencies

This virtual feature is used while querying a Class that has to be assiged as client to the
dependency that is being created and is used in a following dimension the class that is being
querried.

Where alias is the alias you assigned to the MapleMBSE ecore.

Using the clientDependencies Virtual Feature

In general, the following steps outline how to use clientDependencies:

1. It should be used when a named element is queried

2. Information about the type of relationship is specified as [Dependency], [Abstrac-
tion] etc.,

3. When querying themodel element with mse::clientDependencies, the reference
decomposition should be to a supplier element.

Example

The example below is an illustration of how to use the clientDependencies virtual
feature.

25

Figure 5.1: clientDependencies Example

5.2 supplierDependencies
Description

26 • 5 Dependencies

Similar to clientDependencies, supplierDependencies is used to create a re-
lation between two named elements. The only difference between the two virtual features
is supplierDependencies is used when the relationship has to be made from supplier
to client instead of client to supplier, as in the case of clientDependencies.

Syntax

The general syntax for using the supplierDependencies virtual feature is as follows:

/mse::supplierDependencies

This virtual feature is used while querying a Class that has to be assiged as supplier to the
dependency that is being created and is used in a dimension following the class that is being
querried.

Where alias is the alias you assigned to the MapleMBSE ecore.

Using the supplierDependencies Virtual Feature

The following example lllustrates what you need to do to use supplierDependencies

1. It should be used when a named element is being queried.

2. Information about the type of relationship is specified as [Dependency], [Abstraction]
etc.,

3. When querrying the model element with mse::supplierDependencies the reference de-
composition should be to a client element.

5.2 supplierDependencies • 27

Example

Figure 5.2: supplierDependencies Example

28 • 5 Dependencies

6 Enumeration
Enumeration is a special DataType that can be compared to a list of possible values, the
way that "colors" can be an enumeration and possible values can be: red, blue, green, etc.
These Enumerations are composed of EnumerationLiterals which are the different values
and the actual Elements to be referenced. MapleMBSE supports a couple virtual features
that need to be used in conjuction to access and reference any Enumeration and its Enumer-
ationLiterals independently of where in the TWCloud project those values are stored (for
example, underModel or customized profile)

6.1 EnumerationName
Description

MapleMBSE, to simplify Enumeration identification, supports an enumerationName
virtual feature that allows simpler acces to a specfic Enumeration while creating an mse
configuration. Note that MapleMBSE, while using this virtual feature, will by default instan-
tiate the accessed Element to the first EnumerationLiteral of the Enumeration. Nonetheless,
enumerationLabel can be used to change to anotherEnumerationLiteral. See the next section
for further details.

Syntax

The general syntax for using the enumrationName virtual feature is as follows:
alias::enumrationName="qualified::name"
Wherealias is the alias you assigned to theMapleMBSE ecore and qualified::name
is the qualifiedName of the Enumeration. For more information on assigning aliases,
see Importing the MapleMBSE Ecore (page 3).
The enumrationName virtual feature must be used while querying an Element with a
Stereotype that support some Property with an Enumeration type. For more information
how to access a Slot, see the sections in the guide on the metaclassName and featureName
virtualFeatures. Once you get the specific Slot, retrieve its value and within its Qualifier
filter use enumrationName.

Using the VertexTransition Virtual Feature

The following example illustrates what you need to do to use the enumrationName vir-
tual feature:

1. Import the maplembse ecore with an alias.

2. Create a schema that takes an Element with a Stereotype and navigate down to its In-
stanceValue for a Property with an Enumeration type. See lines 15 to 18 in the example
code in the next section for an illustration.

29

3. Make sure you are using the right combination of qualified names for Stereotypes, Slot
Properties and Enumeration.

4. Complete the /value[InstanceValue] navigation with an enumerationLabel (see next
section for further details).

Example

6.2 EnumerationLabel
Description

As shown in the previous sections on EnumerationName, MapleMBSE allows you to make
a reference to Enumeration using a qualifiedName. However, without the right mechanism
to translate from String to EnumerationLiterals and viceversa, the end user will be forced
to deal with strange Object references or unusable Excel cells. This is exactly the problem
enumerationLabel was designed to solve. Using this virtual feature allows the end user to
see the String name of the EnumerationLiteral without forcing any reference-decomposition
and it allows also the end user to change the reference from the Slot Property using the
String name of the disired EnumerationLiteral

Syntax

The general syntax for using the enumrationLabel virtual feature is as follows:
/alias::enumrationLabel
Where alias is the alias you assigned to the MapleMBSE ecore. For more information
on assigning aliases, see Importing the MapleMBSE Ecore (page 3).
The enumrationLabel virtual feature must be used while querying an InstanceValue
with a Stereotype that support some Propertywith a Enumeration type and its was filtered

30 • 6 Enumeration

with enumrationName. For more information how to access this kind of InstanceValue
see previous section.

6.2 EnumerationLabel • 31

32 • 6 Enumeration

7 Util
This section contains all other virtual features that do not create elements but offer a better
alternative to access and map model information.

7.1 multiplicityProperty
Description

TheUML specification contains severalMultiplicityElements likeProperties that have upper
and lower features to describe their multiplicity. Use the multiplicityProperty
virtual feature to make a configuration that translates a string into those upper and lower
values and the other way around.
This virtual feature recognizes the UML commonly used notation for multiplicity (e.g. 0..*).
Supporting this notation makesMapleMBSEmuch easier to use without adding complexity
and thus the final user has less to input into Excel.

Syntax

The general syntax for using the multiplicityProperty virtual feature is as follows:

/alias::multiplicityProperty

Where the alias is the alias you assigned to the MapleMBSE ecore.

This virtual feature can only be used while querying a concrete EClass implementing a
MultiplicityElement like a Property or a Pin. A slash notation is needed prior to the alias,
the 2 colons, and multiplicityProperty.

Asmention previouslymultiplicityProperty uses a string to represent themultipli-
city, meaning that this particular virtual feature cannot being used as a dimension with a
qualifier. It is intended to be used only at a column declaration.

Using the multiplicityProperty Virtual Feature

The following example shows you how to map the multiplicity of a concreteMultiplicityEle-
ment like Property and a string.

1. Import the MapleMBSE ecore, as usual the alias used is mse

2. Inside a syntable-schema navigate to aMultiplicityElement, in this case /ownedAttrib-
ute[Property] within a Class

3. Within that dimension, define a regular column using /mse::multiplicityProp-
erty

33

4. Complete the rest of the configuration as usual:worksheet-templates,synctable
and workbook

Example

Figure 7.1: multiplicityProperty Example

34 • 7 Util

8 Activity Diagrams
An Activity Diagram is a diagram with a direct connection, ActivityEdge that connects a
node, ActivityNode to another ActivityNode. An Activity Diagram is useful to abstract
behavioral information within a system. In order to improve MSE configurations,
MapleMBSE supports control and object flow, the 2 kind of ActivityEdges, with 2 distinct
virtual features.

8.1 ActivityControlFlow
Description

A ControlFlow is an ActivityEdge that is used to control the execution of ActivityNodes
within an Activity. Note that MapleMBSE will fail to instantiate abstract classes like
ActivityNode and it will be required to instantiate instead concrete classes like CallAction-
Behavior, ActivityParameterNode or InitialNode. Nonetheless, ActivityNodes can be used
as a reference to create ControlFlows. See the example section for further details.

Syntax

The general syntax for using the activityControlFlow virtual feature is as follows:
.alias:: activityControlFlow
Where alias is the alias you assigned to the MapleMBSE ecore. For more information
on assigning aliases, see Introduction#LoadingVF

TheactivityControlFlow virtual featuremust be usedwhen querying theActivityNode
of Activity.

Using the ActivityControlFlow Virtual Feature

The following example illustrates what you need to do to use activityControlFlow
virtual feature:

1. Import the maplembse ecore with an alias.

2. Create an schema that navigates till an ActivityNode or which first dimension is an
ActivityNode.

3. Make a dimension reference-query to another ActivityNode using
.mse::activityControlFlow.

4. Complete the reference-decomposition.

This example has extra schema, CallBehaviorActionSchema used to create concrete
ActivityNodes. The other schemas in this example will fail to instantiate Element because
ActivityNode is an abstract class.

35

Note: Some data sources specific to a fictional project were created to simplify the refer-
ence-decomposition. In a real life scenario you might need to identify the Package,
the Activity and the ActivityNode that you want to connect to.

Example

Figure 8.1: ActivityControlFlow Example

36 • 8 Activity Diagrams

8.2 ActivityObjectFlow
Description

An ObjectFlow is an ActivityEdge that is used to represent the flow of an object between
ActivityNodes within an Activity. Due to some UML specifications, some ActivityNodes
cannot be connected directly with an ObjectFlow; they required Pins. In parallel to those
Pins, if one of those ActivityNodes is a CallBehaviorAction further detailed using another
Activity, and then the following Objects must be synchronized in number and direction:
Pins, ActivityParameterNode and Parameters. This synchronization is automatically supported
by MapleMBSE so be aware of the creation of those Elements.

Syntax

The general syntax for using the activityObjectFlow virtual feature is as follows:
.alias:: activityObjectFlow
Where alias is the alias you assigned to the MapleMBSE ecore. For more information on
assigning aliases, see Introduction (page 1).
The activityObjectFlow virtual feature must be used when querying theActivityNode
of Activity.

Using the ActivityObjectFlow Virtual Feature

The following example illustrates what you need to do to use activityObjectFlow
virtual feature:

1. Import the maplembse ecore with an alias.

2. Create a schema that navigates till an ActivityNode or which first dimension is an
ActivityNode.

3. Make a dimension reference-query to another ActivityNode using .mse::
activityObjectFlow.

4. Complete the reference-decomposition.

8.2 ActivityObjectFlow • 37

Example

Figure 8.2: ActivityObjectFlow Example

38 • 8 Activity Diagrams

9 StateMachines
StateMachine diagrams are used to define the different states that a system will exist in.
This kind of diagram helps modelers to describe discrete, event-driven behaviors of the
whole system or its parts.

9.1 VertexTransition
Description

MapleMBSE, in order to simplify Transition betweenVertexes, supports a vertexTrans-
ition virtual feature that allows a better end user experience while inputting data.Note
that MapleMBSE will fail to instantiate abstract classes like Vertex and it will be required
to instantiate instead concrete classes like Pseudostate, State or FinalState. Nonetheless,
Vertex can be used as reference to create Transitions. See the example section for further
details.

Syntax

The general syntax for using the vertexTransition virtual feature is as follows:
.alias:: vertexTransition
Where alias is the alias you assigned to the MapleMBSE ecore. For more information
on assigning aliases, see Importing the MapleMBSE Ecore (page 3).
The vertexTransition virtual feature must be used when querying the any kind of
Vertex within a given Region of a StateMachine.

Using the VertexTransition Virtual Feature

The following example illustrates what you need to do to use the vertexTransition
virtual feature:

1. Import the maplembse ecore with an alias.

2. Create an schema that navigates till an Vertex or which first dimension is an Vertex.

3. Make a dimension reference-query to another Vertex using .mse:: vertexTransition.

4. Complete the reference-decomposition.

This example has some extra schema, called StateSchema, used to create concrete States.
The other schemas in this example will fail to instantiate Element because Vertex is an ab-
stract class.
Note: some data sources specific to a fictional project were create in order to simplify the
reference-decomposition, in a real life scenario you might need to identify the
Package, the StateMachine, the Region and the Vertex that you want to connect to.

39

Example

Figure 9.1: VertexTransition Example

40 • 9 StateMachines

	MapleMBSE Virtual Features Guide
	Contents
	Preface
	1 Introduction
	1.1 Scope and Purpose of this Document
	1.2 Prequisite Knowledge
	1.3 Motivation for Using MapleMBSE Virtual Features
	1.4 Importing the MapleMBSE Ecore
	1.5 General Syntax for the MapleMBSE Virtual Features
	1.6 List of Virtual Features

	2 Stereotypes
	2.1 metaclassName
	Description
	Syntax
	Using the metaclassName Virtual Feature
	Example

	2.2 featureName
	Description
	Syntax
	Using the featureName Virtual Feature
	Example

	3 Associations
	3.1 associatedProperty
	Description
	Syntax
	Using the associatedProperty Virtual Feature
	Example

	3.2 directedAssociatedProperty
	Description
	Syntax
	Using the directAssociatedProperty Virtual Feature
	Example

	3.3 otherAssociatedEnd
	Description
	Syntax
	Using the otherAssociatedEnd Virtual Feature
	Example

	4 Connectors
	4.1 connectedPropertyOrPort
	Description
	Syntax
	Using the connectedPropertyOrPort virtual feature
	Example

	4.2 otherConnectorEnd
	Description
	Syntax
	Using the otherConnectorEnd Virtual Feature
	Example

	5 Dependencies
	5.1 clientDependencies
	Description
	Syntax
	Using the clientDependencies Virtual Feature
	Example

	5.2 supplierDependencies
	Description
	Syntax
	Using the supplierDependencies Virtual Feature
	Example

	6 Enumeration
	6.1 EnumerationName
	Description
	Syntax
	Using the VertexTransition Virtual Feature
	Example

	6.2 EnumerationLabel
	Description
	Syntax

	7 Util
	7.1 multiplicityProperty
	Description
	Syntax
	Using the multiplicityProperty Virtual Feature
	Example

	8 Activity Diagrams
	8.1 ActivityControlFlow
	Description
	Syntax
	Using the ActivityControlFlow Virtual Feature
	Example

	8.2 ActivityObjectFlow
	Description
	Syntax
	Using the ActivityObjectFlow Virtual Feature
	Example

	9 StateMachines
	9.1 VertexTransition
	Description
	Syntax
	Using the VertexTransition Virtual Feature
	Example

