MapleMBSE Application Guide

Copyright © Maplesoft, a division of Waterloo Maple Inc.
2019

MapleMBSE Application Guide

Contents

INEEOAUCTION ..vuiieii et e et e e e e e e e e e e et e et e e eanaeannas v
1 Blocks in MapleMBSEoiiniiiiiiiii e 1
1.1 BIOCKS TabBIC ..vvniieiiieiieie e e e e e e ees 1
Creating a BIOCKoouiiiiiiii e 2

1.2 Creating Association, Aggregation and COmpOSItionccceueevneernerenennnnns 3
1.3 Creating Direct Association, Aggregation and Composition 4
1.4 Block Generalization, Values and Operationcoeevveivneiineiineinneinnnnenns 6
1.5 Constraint BIOCKScivuiiiniiieeiiiie e e e e e e 8

2 The Fitness Tracker Modelooiviiiiiiiiiiiiie e 11
2.1 PACKAZES .vviiniiieie e 11
2.2 Requirements Tableoivuiiiniiiiiiie e 12
Creating REqUITEMENTSivviiniiieiieie e e e e e e e e e aaneeans 12

2.3 USE Case TabIE ...vvuieiiiiiieii e 14
Creating a Use Case Tablec.coeviiiiiiiiiiiiiei e 15

2.4 BIOCKS Table ...cvuiiiiiiiiei e e 16
BIOCKS TTCE ..evniiiieiie ettt et e e e e e e e e 16
Block Satisfaction MatriXevveeiineiineiieeieiieei e e eee e e eaeeens 23

2.5 Internal BIocks Tableoivuiiiniiiiiiiiie e e 23
Block Property Tableoivuiiiiiiiiiiei e 24
Block Connector Tableevuiieiiiiiiieii e 25
Property Connector Tablec.ooiiviiiiiiiiiie e 26

2.6 ACtIVItY DIQZIAMivniiiiiiiie e e e e e e e eans 27
Creating Actions for an ACHIVITYvivuiiiniiieiiee e e e eaens 28

3 State Machine DIaGramooeiuiiiniiiieiieii et e et e e e e e e e e eaeaes 35
3.1 How to Create a State Machine Diagramcoovvvviiiiieiiiniineiineeinnn. 36
3.2 How to Create States and Transitionsoeeueiveinieinniinnrierineiieennenn 36
3.3 How to Create Triggers with Signal Eventsc.ccoveivviiiiiiiiiieieinnn, 37

4 Count Down Timer Modelcccoeiiiiiiiiiiiiie e 39
4.1 Requirements Tablecoiuiiiiiiiii e 40
4.2 USECASE TaADIE ...oevniieiiiiiii e et e 40
4.3 CountDownTimer Tablecccviiiiiiiiiiiieii e 41
Signal TabIE ...uuiiniinii e 42

Time Event Tableccouoiiiiiiiiiie e 43

4.4 Timer Behavior Tablecccooeiiiiiiiiiiiiiie e 44
4.5 StateMachine Properties Tableccoiviiiiiiiiiiiiiiiiiieiie e, 45
Transition Tableeiuiiiiiiii et 46

4.6 ActiVityNOdeTableccvuiiiiiiiiiiie e 47
Opaque Behavior Tableviviiiiiiiiiiieie e 48
Activity ObjectFlow Tableoovniiiiiiiiiieiie e 49
Activity ControlFIow Tablecoiviiiiiiiiiie e 49

4.7 State Behavior Tableccouviiniiiiiiie e 51

il

iv ¢ Contents

State Behavior ControlFlow Tablec..cociiiiiiiiiiiiiiini 52

State ControlFlow Condition Tableccooveeiiiiiiiniiiiiiiiiniiniiecii 53

5 Turbofan Engine Modelccoiiiiiiiiiiiiiii e 55
RN B T (T 11T (o) o PN 55
5.2 Turbofan Modeloiiniiii e 55
5.3 REQUITEIMEILS ..eevuiiiiiiiieiii e ettt ettt et e e e e e 55
54 ValUCTYPE vt 56
5.5 Constraint BIOCKScuiiiiiiiiiii e 56
5.6 System Modelcooiiiiiiiiiiii e 56
ST RESUIES it 56
S8 REIEIEIICES ... ieviiiiieei e 57

6 UAV MOUEL ...ttt et e e anns 59
LT I T (T 11T [) o PN 59
6.2 Analyze Stakeholder Needsc..ooouuiiiiiiiiiiiiiiiii e 59
6.3 Mission ReqUITEMENtceuuuiiiiniiiiiiiii i 60
6.4 System ReqUIreMENtSsc..veeuuniiiiiiiiiiniii e 60
System Behavioriiiuiiiiiiiiiiii 60
Weight EStIMationc...couuiiiiiiiiiiii e 60

Wing Area EStIMationcouiiiiiiiiiiiiiiieii e e e e 61

6.5 REIETEIICES ... evviiiiieii e 61
TEMEA TemPIateccouniiiiiiiiiiii et e 63
8 B 0 (0T 11T (o) o PN 63
T2 FME A e 63
7.3 Recommended ACLIONvieuuiiiiiiii et 64

TA REICTENCES «...veenieeei e e 64

Introduction

MapleMBSE Application Guide Overview

MapleMBSE™ gives an intuitive, spread-sheet based user interface for entering detailed
system design definitions, which include structures, behaviors, requirements, and parametric
constraints.

The Application directory of your MapleMBSE installation contains six applications. Each
of the chapters in this guide corresponds to one of the applications:

Chapter

Application Name

Description

1

Working With Blocks in MapleMBSE

The first application uses the
TWCSysML-Structure.mse file to demonstrate
the use of blocks in MapleMBSE

Creating a Model in MapleMBSE (Fitness
Tracker Model)

This model uses the TWCSysML-Model.mse
and TWCSysML-ModelActivity.mse files to
demonstrate how to create a model in
MapleMBSE which can be exported to the
Teamwork Cloud

Working With State Machine Diagrams in
MapleMBSE

The example in this chapter defines how to
create states, define their transitions and the
events that trigger these transitions using
MapleMBSE.

Count Down Timer Model

This chapter contains a model of Countdown
Timer that uses TWCSysML-Timer.mse to
create a simulatable Timer model.

Turbofan Engine Model

This example model is used to identify design
points of a turbofan engine. MapleMBSE and
Cameo Systems Modeler™ were used to create
a turbofan example model

UAV Model

This model uses Object Oriented System
Engineering Methodology (OOSEM) to design
a conceptual model of an Unmanned Aerial
Vehicle (UAV).

FMEA Template

This model is used to perform FMEA analysis
by accessing SysML model elements from the
Teamwork Cloud server.

Related Products

MapleMBSE 2019 requires the following products:
¢ Microsoft® Excel® 2010 Service Pack 2, Excel 2016 or Excel 2019.

vi ¢ Introduction

* Oracle® Java® SE Runtime Environment 8.
Note: MapleMBSE looks for a Java Runtime Environment in the following order:
1) If you use the -vm option specified in OSGiBridge.init (not specified by default)

2) If your environment has a system JRE (meaning either: JREs specifed by the environment
variables JRE HOME and JAVA_HOME in this order, or a JRE specified by the Windows
Registry (created by JRE installer)), MapleMBSE will use it.

3) The JRE installed in the MapleMBSE installation directory.

If you are using IBM® Rational® Rhapsody® with MapleMBSE, the following version is
supported: Rational Rhapsody Version 8.15

+ Teamwork Cloud™ server 18.5 SP3 or 19.0 SP2

» Note that the architecture of the supported non-server products (that is, 32-bit or 64-bit)
must match the architecture of your MapleMBSE architecture.

Related Resources

Resource Description

System requirements and installation instructions for
MapleMBSE Installation |MapleMBSE. The MapleMBSE Installation Guide is available
Guide in the Install.html file located either on your MapleMBSE
installation DVD or the folder where you installed MapleMBSE.

MapleMBSE User Guide |Instructions for using MapleMBSE software. The MapleMBSE
User Guide is available in the folder where you installed
MapleMBSE.

MapleMBSE Configuration
Guide

For additional resources, visit http://www.maplesoft.com/site_resources.

Getting Help

To request customer support or technical support, visit http://www.maplesoft.com/support.
Customer Feedback

Maplesoft welcomes your feedback. For comments related to the MapleMBSE product
documentation, contact doc@maplesoft.com.
Copyrights

* Microsoft, Windows, Windows Server, Excel, and Internet Explorer are registered
trademarks of Microsoft Corporation.

http://www.maplesoft.com/site_resources
http://www.maplesoft.com/support

Introduction * vii

Teamwork Cloud, Cameo Systems Modeler, and MagicDraw are registered trademarks
of No Magic, Inc.

Eclipse is a trademark of Eclipse Foundation, Inc.

UML is a registered trademark or trademark of Object Management Group, Inc. in the
United States and/or other countries.

viii ¢ Introduction

1 Blocks in MapleMBSE
1.1 Blocks Table

The block diagram shown below is created using MapleMBSE and syncing it to the Team-
work Cloud. This chapter will explain how to work with blocks in MapleMBSE.

bad [Package] Structure [Structure ||

«constraints
biocks Fundsmental Design Parameter
Aeroplane - Span o Lengihib
— m Vmax
Electrical Systams. Venise
.Emerg:m:y Systems Range
uel System : Wing Loading
Hydraulc System Aspect Rato(AR)
L = Thrust Loading
Wiotal
Range
wing spen
max
Veruise

ablocks
Boeing 747
']s . 0.1
ebloc: [ablacks abiocks | [eblacks
Emphanage |Engine Control system Avienies System Viings ontrol Systems
T
1. r 1.] Jo.r lo
sblocks <blocks [ebiocke <blocks “blocks [ebbcks
Rudder Flight Control System Engine Aiberon Flaps Slats

This example is created with the following package structure:
Model
+ Structure

The list of features available in MapleMBSE to define blocks are:
* Association

* Aggregation

» Composition

* Generalization

* OwnedEnd Multiplicty

 Constraint

» Property

2 « 1 Blocks in MapleMBSE

* Value
* Operations

* Redefine Value

"BlocksTree ‘BlocksTreeDirect BlockProperties 'Redefes ConstraintTable ~ BlockConstraintTable ParametricTable
The configuration file, TWCSysML-Structure.mse defines seven worksheet templates to
work with blocks:

¢ The BlocksTree and BlocksTreeDirect worksheets are used to create blocks and their
relationships.

» The BlockProperties worksheet is used to create generalizations, values and operations.
* The Redefines worksheet is used to specify values and redefine values to blocks.

» The ConstraintTable worksheet is used to create parameters, opaque expressions and
define constraint blocks.

¢ BlockConstraintTable is used to create a direct association between Blocks and Con-
straint Blocks.

» Parametric Table is used to create a binding connector between the constraint parameters.

Creating a Block

To create a block, enter a name for the block in the column C insertion area (the Block Top
Level column) as shown below. A block called Aeroplane is created.

- -]

[Block Top level* Block 2nd Level* [Aggregation]

"= Enter block name

ﬂ J

A B C D E

bo oyl w e

[Block Top level* [Block 2nd Level* [Aggregation |
IAeropIane] | |

o b W=

To create a relation between blocks, they must first be created in the Block Top Level
column before they can be added in the second level.

Blocks can be created in all worksheets except for the ConstraintTable worksheet.

1.2 Creating Association, Aggregation and Composition * 3

1.2 Creating Association, Aggregation and Composition

Asspoation
eblocks

zblocks
Engine Control System

Flight Control System

e 1 Aggregation E:m:::.
Engine Control System L= gine
=blocks - [ablocks
Asroplane ‘ Composition Engine

To create relations without direction, use the BlocksTree worksheet. The blocks need to
be created as shown below.

To create Association relations:

1. Enter the block name in the Block Top Level column.

[Block Top level* |Block 2nd Level*
Aeroplane

Engine

Engine Control System
Flight Control System

|Aggregation

2. The row is highlighted as a duplicate key to indicate the block already exists. Enter the
related block name in the Block 2nd Level column, in the same row.

4 « 1 Blocks in MapleMBSE

[Block Top level* Block 2nd Level* Aggregation
Aeroplane

Engine

Engine Control System _ADuplicated Key
Flight Control System /
ngine Control System

3. MapleMBSE checks if the entry is valid by comparing it with existing blocks and will
add none in the Aggregation column by default.

[Block Top level* |Block 2nd Level* |Aggregation |
Aeroplane

Engine

Engine Control System
Flight Control System
Engine Control System Flight Control System none

To create Aggregation and Composition relations, follow the previous steps by entering the
owned end block (the class that has an association owned by another class) in column C,
replace none with composite in the Aggregation column to create a composition relation
and shared to create an aggregation relation.

B c ' D ' E
|Block Top level® |Block 2nd Level* |Aggregation
Aeroplahe
Engine

Engine Control System
Flight Control System
Aeroplane Engine composite —> Composition
Engine Control System Engine shared ~ —> Aggregation

Flight Control System Engine Control System none — Association
Al Tree ~“BlockProperties ‘Redefiies “Constrantrable) 14

1.3 Creating Direct Association, Aggregation and
Composition

Use the BlocksTreeDirect worksheet to create relations with direction. Both tables are
similar in defining relations, the type of relation differs based on the entry in the Aggregation
column. Enter the class name in the Block Top Level column and enter the name of the
Attribute class in the Block 2nd Level column and specify the aggregation type. The figure
below shows relations between blocks with navigability.

1.3 Creating Direct Association, Aggregation and Composition * 5

AlB c D E
2
j Block Top level* Block 2nd Level* |Aggregation
6 Aeroplane
7 Avionics System
8 Aeroplane Avionics System composite—>» Direct Composition
9 Cockpit Display System
10 Cockpit Display System Avionics System shared —> Direct Aggregation
11 Crew
12 Aeroplane none—> Direct Association

i8] BlocksTreeDirect

zblocks
Aeroplane

sblocks
Crew

~'Redefines ConstrantTable

blocks

Avionics System

«blocks

Cockpit Display System

The following table shows the necessary information needed to create a relation between
blocks and their corresponding worksheet. The Class and Attribute Class columns imply
that the class and its related class should be created first and then the respective aggregation

type.

Worksheet Type Class Attribute Class Aggregation

Association X X None

BlocksTree Aggregation X X shared
Composition X X composite

Direct Association X X None

BlocksTreeDirect | Direct Aggregation X X shared
Direct Composition X X composite

To represent multiplicity, at the Association level, enter a value for the respective blocks
in the Multiplicity column as shown below.

6 < 1 Blocks in MapleMBSE

Multiplicity

1.4 Block Generalization, Values and Operation

To generalize a block, enter the name of the generalizing block in the Block Top Level
column of the BlockProperties worksheet and a corresponding value in the Generalization

Block column.

A B C D F
I
2z
Generalization
Block Top Level Value Operation
3 Block
5 Aeroplane
6 Boeing 747
7 | Boeing 747 Agoplane

Use the same worksheet to add a value property to a block. Enter the block name in the

Block Top Level column and then enter the value in the Value column.

A B C D F
T
2
Generalization
Block Top Level Value Operation
3 Block
5 Aeroplane
6 Aeroplane Wtotal
7 Aeroplane wing span
8 Aeroplane Vmax
9 Aeroplane Veruise
10 Aeroplane Range

Similarly, to add operations to the blocks, enter the block name in the Block Top Level
column and the operation name in the Operation column.

1.4 Block Generalization, Values and Operation ¢ 7

A B C D E F
1
2
Generalization
Block Top Level Value Operation
3 Block
5 Engine Control System
6 Engine Control System monitor engine temperature
7 Engine Control System monitor engine pressure
8 Engine Control System control fuel flow

In the Redefines worksheet, to enter a numerical value for Value Property use the Value
column, as shown below.

A B C D E F G
il
2 Block Value Property Value - =
3 Block Property
5 Aeroplane
6 Aeroplane Range
7 Aeroplane Veruise
8 Aeroplane Vmax
9 Aeroplane wing span
10 Aeroplane Wrtotal
11 Boeing 747
12 Boeing 747 Range 10800|Aeroplane Range
13 Boeing 747 Vcruise 907|Aeroplane Vcruise
14 Boeing 747 Vmax 939|Aeroplane Vmax
15 Boeing 747 wing span 60|Aeroplane wing span
16 Boeing 747 Wrtotal 333400|Aeroplane Wtotal

To redefine a property of an existing block, type a new value in the Value column along
with information about the block from which the value is redefined. For example, Aeroplane
has value properties: Range, Vcruise, Vmax, wing span and Wtotal. These properties are
not defined with numerical values, as shown above (these fields can hold numerical values).
The Boeing 747 block is generalized to Aeroplane. To redefine the values from Aeroplane
to Boeing 747, enter the same value for Boeing 747 properties as that of Aeroplane. In the
Value column, enter the desired values. Now to redefine, enter the block from which the
value is redefined and the name of the value being redefined as shown below.

8 < 1 Blocks in MapleMBSE

A B C D E F
1
g Block Value Propert Value e
3 Bl |
5 Aeroplane
6 Aeroplane Range Values to be
7 Aeroplane Veruise 7 redefined from
8 Aeroplane Vmax Aeroplane Redefined Value and
9 Aeroplane wing span Values redefined to Block name
10 Aeroplane Wtotal 7 Boeing 747 N
11 Boeing 747 L _ \
12 Boeing 747 Range 10800 peroplane Range
13 Boeing 747 Vcruise 907 Peroplane Vcruise
14 Boeing 747 Vmax 939 Peroplane Vmax
15 Boeing 747 wing span 60 peroplane wing span
16 Boeing 747 Wtotal 333400 peroplane Wtotal

1.5 Constraint Blocks

The process for creating constraint blocks, relations and parameters is similar to that of

working with blocks in the previous section.

IConstralnt

Constraint Block 2nd | Constraint Constraint Specification
Co=tal Bl iopies] Level* Parameters |Name Block Name Craguetxpeession
Aspect Ratio
Aspect Ratio AR
Aspect Ratio ratio Aspect Ratio
Aspect Ratio ratio Aspect Ratio |eq b"2/s
Fundamental Design Parameter
Fundamental Design Parameter Aspect Ratio

In the Constraint Block Top Level column, enter a constraint block and its breakdown in
the Constraint Block 2nd Level column. This creates a direct composition relation between
the blocks. In order to create different relations between the constraint blocks the configur-
ation file has to be edited. To create parameters, enter the respective block in the Constraint
Block Top Level column and the parameter name in the Constraint Parameters column.
To add an equation to a constraint block, enter the block name followed by the name of the

constraint in the Constraint Name column, as shown above. Enter the constraint block
name in the Constraint Block Top Level column and a name for the specification equation
in the Specification column. MapleMBSE accepts the entry. The corresponding field in the
Opaque Expression column is empty. Enter an expression, as shown in the figure.

To create a direct association between the blocks and Constraint Blocks select the Block-
ConstraintTable worksheet. Next, enter the block name in the Block Name column and
Constraint Block in the Constraint Block Name column, as shown below.

1.5 Constraint Blocks * 9

[Block Name | Constraint Block Name |

Analysis Context

Fundamental Design Parameter
Fnalysis Context Fundamental Design Parameter

To create a binding connector between the parameters of the Constraint Blocks, you must
first open the ParametricTable worksheet. Enter the Constraint Block and the parameter of
the constraint that has to be connected in the Constraint Parameter Column, followed by
the Constraint Block name and the target parameter in the respective column. MapleMBSE
will automatically create a binding connector between the two parameters of the constraint
blocks specified.

Binding Connector
Constraint Block Constraint Parameter |Constraint Block Constraint Parameter
Aspect Ratio
Aspect Ratio AR
Fundamental Design Parameter
Fundamental Design Parameter AR
JAspect Ratio AR Fundamental Design Parameter AR
Fundamental Design Parameter AR Aspect Ratio AR

10 + 1 Blocks in MapleMBSE

2 The Fitness Tracker Model

The Excel Workbook template, TWCSysML-Model.xlsx, arranges the display of the ele-
ments in worksheets as defined in the configuration files.

The Package structure of the model is displayed in the Packages worksheet.

The Requirements packages are defined hierarchically; defining a top-level requirement,
decomposing the requirements into groups and finally stating the requirements.

Once the requirements are defined, actors and their interactions with the system are created
in the Actors and UseCases worksheets.

The BlockTree and BlockProperties worksheets are used to display information about the
system context, specifications and relations.

The BlockConnectorTable and BlockPropertyTable worksheets create connections
between block properties.

Once the structural aspects are defined, the system's behavior are defined by using the
TWCSysML-ModelActivity.mse configuration file.

This example was created with the following package structure:
Model

- Requirements

- Use Case

- Structure

- Behavior

I'_Packages - RequirementsTree &7 S UseCases ;| [« -0 e g BlocksSatisfiesMatrix

2.1 Packages

The Packages worksheet is used to organize the model elements into respective Packages.
The user can create packages by specifying a name for the package under the Name column
in the Packages worksheet. Packages are created as shown in the figure below. The config-
uration (.mse) file is configured in such as way so that when a user begins working directly
in a worksheet, without creating any packages beforehand, the packages are automatically
created and elements are displayed under the packages corresponding to the worksheet.

11

12 + 2 The Fitness Tracker Model

2.2 Requirements Table

The requirements defined for a system are used to identify the behavior, constraints, system
specifications, etc. for which the system is modeled. Requirements can be categorized or
grouped based on their definition of the system such as: performance, functional, constraints,

etc.

This example was created with requirements in three levels, as shown in the Excel file below.
The number of levels and appearance of the Requirements worksheet is controlled by the
configuration (.mse) file and can be changed by editing the configuration file.

_ Requirements |

(] i
St
q

| Requirement 2 WNIEY peoivement |
Requirement 2

Requirement 4

E—

Creating Requirements

Requirements contain a unique ID, Name and Specification ficld to identify and name each

requirement with a brief description.

2.2 Requirements Table + 13

Requirement Requirement 2nd Level
Reguirement Reguiren I0* Name I0* Name m* .
N - -
Mission Requirements Finess -~
Wission Requiremeats Finess Trackes fl Traer ‘
(Nisson Reqements Finess |
Tk ALY |Conpebity 1 sty
R1 Mission Reguirements Fitness
Tracker RlMlssmnI%requ;rementsFltuess RN EsSIon REqHireeata Fikiess
Tt X Tracker
R1.1 Compatibility L R1.1 Compatibility

L

R1.1.1 SmartPhone Connect

with smart phone toview
activity and track records

To enter a new requirement:

1. Enter an ID for a top level requirement in the ID column, as shown above. MapleMBSE
checks for duplicate entries and adds a row for the corresponding ID, enabling the user
to enter a name and specification for the requirement.

2. To create a second level requirement, use the same ID and name as for the top-level re-
quirement. MapleMBSE will detect it as a duplicate entry and highlight it as a duplicate
key. Type an ID for the requirement in the ID column, of the Requirement 2nd Level
section (column E), as shown above. MapleMBSE considers this to be a unique entry
and enables the corresponding row to accept a name and description for the requirement.

3. To create a third-level Requirement, follow step 2, then enter a new ID in column H.
Follow the above steps to create any number of requirements. Excel identifies the ID columns

as text format fields. The figure below shows the requirements created for the Fitness
Tracker model, using the steps above.

14 + 2 The Fitness Tracker Model

A B G E F H]
1
2
3 Requirement Requirement 2nd Level Requirement 2nd Level
q ID* |Name ID* |Name 1D* Name Specification
5
6 R1 Mission Requirements Fitness Tracker
7 R1 Mission Requirements Fitness Tracker [R1.1 Compatibility
Connect with smart phone to view activity
8 R1 Mission Requirements Fitness Tracker [R1.1 Compatibility R1.1.1 [SmartPhone and track records
9 R1 Mission Requirements Fitness Tracker [R1.1 Compatibility R1.1.2 |WaterProof 5 ft water resistance
10 R1 Mission Requirements Fitness Tracker [R1.1 Compatibility R1.1.3 |Message Notification |Notify of any incoming message or calls
Device features and settings should be
1 R1 Mission Requirements Fitness Tracker [R1.1 Compatibility R1.14 |Ease of Use easier to understand and use.
12 R1 Mission Requirements Fitness Tracker [R1.1 Compatibility R1.1.5 |Alarm Notification Notify alarm through vibration
13 R1 Mission Requirements Fitness Tracker [R1.1 Compatibility RL16 [Style available in different colors and compact
14 R1 Mission Requirements Fitness Tracker [R1.2 Performace
risk factor of wearing band should be less
15 R1 Mission Requirements Fitness Tracker [R1.2 Performace R1.2.1 |Safety [than .0001%
16 R1 Mission Requirements Fitness Tracker |R1.2 [Performace R1.2.2 |Accurate accuracy of tracking should be +/- 2%
17 R1 Mission Requirements Fitness Tracker [R1.2 Performace R1.2.3 |Battery Life Minimum 15 days with one charge
18 R1 Mission Requirements Fitness Tracker [R1.2 Performace R1.2.4 |Store Data Keep record of everyday activity
19 R1 Mission Requirements Fitness Tracker |R1.2 |Performace R1.2.5 |Activity Find activity type
20 R1 Mission Requirements Fitness Tracker [R1.3 Features
should track deep sleep cycle and sync
21 R1 Mission Requirements Fitness Tracker [R1.3 Features R1.3.1 |Track Sleep Cycle with phone
22 R1 Mission Requirements Fitness Tracker |[R1.3 |Features R1.3.2 |Track Steps monitor every day average walking steps
monitor heart rate during fitness activity
23 R1 Mission Requirements Fitness Tracker |R1.3 Features R1.3.3 |Heart Rate Monitor and regular activity
24 R1 Mission Requirements Fitness Tracker |[R1.3 |Features R1.3.4 |Calorie count display calories burnt
25 R1 Mission Requirements Fitness Tracker |R1.3 [Features R13.5 |[Time display time
26 R1 Mission Requirements Fitness Tracker [R1.4 |Display
27 R1 Mission Requi Fitness Tracker |R1.4 [Display R1.4.1 |[Selection have a touch sensitive display
28 R1 Mission Requirements Fitness Tracker [R1.4 |Display R1.4.2 |Display options izable display

2.3 Use Case Table

The Use Case table describes the goals and interactions of the system model with external
users (stakeholders).

To create a use case table, the actors of the system are identified, then the goals of the system
and other functionality expected by the user.

el
=0
o

Ale < o £ G
1
2
Use ;Case . - "
3 \User |check phone notification
Use Case) ser [omectmnsmone
7 Jusar [connect with phone iy data
2 3 ser [cermectan smane v dats connect with phone
Actor 1 0 [user [rack and maeroe gty actty
n luser [Track and menitor daily activity Teack and monitor daily activity
u o [rewtime
n [Smart Phare liyme data |
i [Smart Phone. Isync data sonnect with phone |
15 [smanphose e data conmectwih prone oynedaa
MW: H | o T |
3 n reovider Track iy activity |
1 [provder r ity T

>
O

2.3 Use Case Table « 15

Creating a Use Case Table

Use cases and actors are identified by unique names. The configuration file is created in
such a way that two different tables are needed to create the use case table. The Actors
worksheet is used to list the identified actors of the system. The UseCases worksheet is
then used to create the interaction between actors and use cases.

To create a Use Case table:

1. Create actors in the Actors worksheet as shown below.

e ; I

3 |

2 | |

3 Actors . I o S

=B - : = - e e [| iz ‘ Jeneee iz
I sar | I]

P | =l R I A . - ——y

: i [?z.'ﬁ"-:) |

] el ket] Aot et) |

] ! i [’}] | Azt el A el
o e =
nariFore i | i " ————

] - T Isa' o]] |

s 3 B] o s i 2

final o i
2 — e Case — Tse Case 2 = ?t
o~

2. In the UseCases worksheet, type the name of the actor to create a use case or select a
name from the list. Type the use case in the UseCasel column as shown above.

3. To relate use cases, enter the actor name and corresponding use case in columns C and
D respectively. MapleMBSE will highlight this as a duplicate key. Enter the other use
case in the Associated UseCase2 column (column E). This entry is considered valid and
rows are automatically created to show that the association is bidirectional.

The Use Case table created for the Fitness Tracker is shown below. The Associated
UseCase3 column is automatically generated by MapleMBSE based on the input in the
other columns. To associate use cases, they must already exist in the UseCasel column.

16 + 2 The Fitness Tracker Model

AlB C D E F
i
2
3 Actor UseCasel Associated UseCase2 Associated UseCase3
5 User check phone notification
6 User connect with phone
7 User connect with phone sync data
3 User connect with phone sync data connect with phone
9 User Track and monitor daily activity
10 User Track and monitor daily activity |Update Software
1 User Track and monitor daily activity |Update Software Track and monitor daily activity
12 User view time
13 Smart Phone sync data
14 Smart Phone sync data connect with phone
15 Smart Phone sync data connect with phone sync data
16 Provider Update Software
17 Provider Update Software Track and monitor daily activity
18 Provider Update Software Track and monitor daily activity Update Software

2.4 Blocks Table

Blocks are created in a predefined package named, Structure. From the configuration file,
three worksheets are created:

* BlockTree to create blocks and parts,

» BlockProperties to create operations, generalizations and to create values for the blocks,
and

» BlockSatisfiesMatrix to validate the model against the requirements to identify if all
requirements have been met.

To make the example model simpler, only direct composition and generalization relations
between blocks are used.

Blocks Tree

Blocks are identified uniquely by their names and can be accessed between worksheets. To
identify the scope and working environment of the system, the mission context table is
created using the BlockTree and BlockProperties worksheets.

Once the system scope is defined, a blackbox specification for the system of interest is
created in terms of values and operations. These operations defined for the system are used
to work with the behavior of the system defined in a different configuration file.

On defining activities of the system using the behavior configuration file, logical blocks
are defined in the same table using BlocksTree. Finally, parts of the system are defined at

2.4 Blocks Table « 17

a physical level to meet the requirements specifications and also to satisfy the behavioral
aspect of the system modeled.

1. To create a block, enter a name for the block in the Block Top Level column (column
C), as shown below. Every unique entry in this column creates a block. Text entered is
case sensitive so to create properties for a block in the second level, the block name
should be accessed with the same case.

18 ¢ 2 The Fitness Tracker Model

s ss e s s m s s e e u]eu|{ie |w]=]0]

AB {

A T e e .

AR c] E F

IR E A B R PR EICRICE I

. To create a direct compostion between blocks or to assign a block as part of another

block type, enter the name of the block for which a part has to be created in the Block
Top Level column followed by the part name in Block 2nd Level, as shown above. Now
a direct association is created between Mission Context and Activity Tracker.

. Blocks can be created at a third level in two ways: similar to adding blocks at the second

level, specify the top level block, then the second level block, and finally the third level

2.4 Blocks Table ¢ 19

block name. The figure below illustrates this way of adding a third level block. Since
Screen is already a part property of Activity Tracker, physically adding a part to Screen,
as shown in row 9, will automatically create row 6 and vice versa.

AlB C D , E
1
2
3 [Block Top level* |Block 2nd Level* |Block 3rd Level* |
5 Activity Tracker - Physical Screen
6 Activity Tracker - Physical Screen Capacitive touch Screen
7 Capacitive touch Screen
8 Screen
9 Screen Capacitive touch Screen
10

a4

To create generalizations, the BlockProperties worksheet is used. Similar to the above step,
once blocks are created in the top level column, enter the block name in Block Top Level
and the generalizing block in the Generalization Block column (cell D6). In the table,
Android and 10S are generalized to Smartphone.

AR IS D E F
1
1
. MockToplevel [Genealzation Block Vole (Operaton
5 [Smart Phone
] Senart Phome Androld
7 Smart Phone KIS
8 1MI55:CI'I(C"I['EII
3 Water
10 \Jzer
il 105
12 Physical Envingnment
bE] Physital Envinanment [Gym
u Physical Environment [Water
15 Gym
16 Wikch
1 Walth Activity Tracker
18 Android
18 Activity Tracker

To create the value and operation property of a block, in the BlockProperties worksheet
enter the name of the block that you want to assign a value. Since the block already exists,
the row is highlighted as a duplicate key. Type the value in the Value column (column E),

20 <+ 2 The Fitness Tracker Model

as shown below, to add a value to the block, Activity Tracker for this example. Notice
cells E6 to E12 have values assigned to Activity Tracker.

5

& Activity Tracker wer

7 Activity Tracker reliability

8 Activity Tracker accuracy

9 Activity Tracker calories

10 Activity Tracker hours.

11 Activity Tracker bmp

12

13 Activity Tracker trigger vibration

14 Activity Tracker get heart rate

15 Activity Tracker calculate calories

16 Activity Tracker et steps data
El Activity Tracker [get BMR data

18 Activity Tracker display notification

19 Activity Tracker compare send/receive signal
20 Activity Tracker send processed data
2 Activity Tracker continuous movement
22 Activity Tracker receive incoming data
23 Activity Tracker record time

24 Activity Tracker save data locally

25 L

In a single row for the block, either value or operation can be assigned to it. To assign oper-
ation to a block, a similar procedure is followed. Enter the block to which an operation has
to be created in the Block Top Level column and enter the operation name in the Operation
column (column F), as shown below.

2.4 Blocks Table

21

FIENE c | b | E F

1

2

o [mockToptevel [CT[value [operation |
s 4

6 Activity Tracker f

7| Activity Tracker reliability

8 Activity Tracker acturacy

9 | Activity Tracker calories

10| Activity Tracker hours

11 Activity Tracker bmp

u o

13| Activity Tracker i vibration

14 Activity Tracker [get heart rate

15 | Activity Tracker calculate calories

16 Activity Tracker get steps data
17| Activity Tracker et BMR data

18 | Activity Tracker display notification

19 | Activity Tracker compare send/receive signal
0| Activity Tracker send processed data
| Activity Tracker continuous Mmovement
22| Activity Tracker receive incoming data
3 Activity Tracker record time

24 Activity Tracker save data locally

25 L

Using the steps mentioned above, the Activity Tracker is created and the block table at
the physical level is shown while the rest of the inputs are filtered.

22 + 2 The Fitness Tracker Model

Block Top level™®

Block 2nd Level™

Block 3rd Level™

3 axis accelerometer

32-bit microcontroller CPU

Activity Tracker - Physical

Activity Tracker - Physical

Power Subsystem

Activity Tracker - Physical

Power Subsystem

Battery

Activity Tracker - Physical

Power Subsystem

Power Management Unit

Activity Tracker - Physical

Processor Subsystem

Activity Tracker - Physical

Processor Subsystem

32-bit microcontroller CPU

Activity Tracker - Physical

Processor Subsystem

Bluetooth IC

Activity Tracker - Physical

Processor Subsystem

PCB board

Activity Tracker - Physical

Processor Subsystem

ProcessorApplication

Activity Tracker - Physical

Processor Subsystem

Vibration Motor

Activity Tracker - Physical

Processor Subsystem

Wireless Chipset

Activity Tracker - Physical

Screen

Activity Tracker - Physical

Screen

Capacitive touch Screen

Activity Tracker - Physical

Tracker Subsystem

Activity Tracker - Physical

Tracker Subsystem

3 axis accelerometer

Activity Tracker - Physical

Tracker Subsystem

Ambient Light Sensor

Activity Tracker - Physical

Tracker Subsystem

Barometeric Pressure Sensor

Activity Tracker - Physical

Tracker Subsystem

Galvanic5Skin Response $Sensor

Activity Tracker - Physical

Tracker Subsystem

Optical Heart Rate Monitor

Ambient Light Sensor

Barometeric Pressure Sensor

Battery

Bluetooth IC

Capacitive touch Screen

Galvanic Skin Response Sensor

Optical Heart Rate Monitor

PCB board

PCB board

Storage unit

Power Management Unit

Power Subsystem

Power Subsystem

Battery

Power Subsystem

Power Management Unit

Processor Subsystem

Processor Subsystem

32-bit microcontroller CPU

Processor Subsystem

Bluetooth IC

Processor Subsystem

PCB board

Processor Subsystem

PCB board

Storage unit

Processor Subsystem

ProcessorApplication

Processor Subsystem

ProcessorApplication

32-bit microcontroller CPU

Processor Subsystem

Vibration Motor

Processor Subsystem

Wireless Chipset

ProcessorApplication

ProcessorApplication

32-bit microcontroller CPU

Screen

Screen

Capacitive touch Screen

Storage unit

Tracker Subsystem

Tracker Subsystem

3 axis accelerometer

Tracker Subsystem

Ambient Light Sensor

Tracker Subsystem

Barometeric Pressure Sensor

Tracker Subsystem

Galvanic Skin Response Sensor

Tracker Subsystem

Optical Heart Rate Monitor

Vibration Motor

Wireless Chipset

2.5 Internal Blocks Table ¢ 23

Block Satisfaction Matrix

The Block Satisfaction Matrix is used to verify whether the blocks created satisfy the re-
quirements. The matrix template is created automatically using the information from the
Blocks and Requirements worksheets.

A c DleElFlGgH 1)K/ LIMN|O P|laQlrR s|T U Vv W x| v]|ZAAABACAD
= =
o = 2B |~ =2
=& |z [2 = = |2
sERFEELlEEElE el
SEEREEEEER EEREER
EME = B EAER S =2 |7 2 B
ERE Z = = == S |2 s =
==E[FE = s = E
3 = =
E] ES
a
6 B3 axis accelerometer
7| 32 bit microcontroller CPU
8 o [Activity Tracker
5 | o [Activity Tracker - Physical
10 | i [Ambient Light sensor
11 _ [Android
12 Barometeric Pressure Sensor
13 Battery
14 Bluetooth IC
1s Capacitive touch Screen
16 Galvanic Skin Response Sensor
17 GPs
1s Gym
1s 105
20 Mission Context
21 Optical Heart Rate Monitor
22 PCB board
23 Physical Environment
24 Power Management Unit
2s Power Subsystem
26 Processor Subsystem
27 ProcessorApplication
28 Screen
25 Smart Phone
20 Storage unit
31 Tracker Subsystem
22 User
33 Vibration Motor
34 Watch
as Water
s6 Wireless Chioset

To create a satisfy relation between the blocks and requirements, identify the block that
satisfies a requirement and in their intersection of row and column, enter 'x' to indicate that
the corresponding requirement has been met. This creates a satisfy relation between block

and requirement.

2.5 Internal Blocks Table

In the previous sections the system of interest has been defined with operations, values, and
by different parts of the system. In this section, we will define how these parts of the system
and its properties, will interact with each other.

To define ports through which the system interacts with other parts and subsystems, we
create ports to blocks and then represent how these ports are connected. As shown in the
diagram below, we can represent the interaction of block properties using ports and connect-

ors.

24 + 2 The Fitness Tracker Model

[Block Name |PropertyName [PortProperty
3 axis 5
3 axis. fmotionsensorip
3 axis accelerometer ftrackerinfoout
3 axis accelerometer Vi
32-bit microcontroller CPU V4
32-bit microcontroller CPU Processorapplication
et Tracker~FRyTl yi Activity Tracker - Physical __|light sensorip Tracker Subsystem lightsensorip Activity Tracker Subsystem
[Activity Tracker - Physical __|Power Actiity Tracker - Physical __|motion senserip
[Activity Tracker - Physical [P Activity Tracker -Physical | motion sensorip | Tracker Subsystem 7 Activity Tracker - Physi Subsystem
[Activity Tracker - Physical Screen — pcessuco concorip
Activity Tracker - Physical Trai 2 Physial Tracker Subsyste: Acthvity Tracker - PhsicalTracker Sul
A ioit Traker —Phosiea] 7 ity Shal _ [gres ip__[Tracker Subsystem pressuresensorip ctivity Tracker - Physical Tracker Subsystem
|Activity Tracker - Physical yd Y Physical USB i
[Activity Tracker - Physical 7 actrvity Tracker - Physical __[USBin [Powes Subsystem usbip Activity Tracker - Physical [Power Subsystem
Activity Tracker - Physical Vi ctivity Tracker - Physical user dispay op,
j:-v-:vrra::u—:::s:M: ,/ activity Tracker - Physical um;?y(p screen [userdesplayop actiity Tracker - Physica|screen
A:lnut: Tracker - Physical y Y Pyl fusar
Activity Trac 7 Activity Tracker - Physical ip screen userip Activity Tracker - Physical [Screen
Activity Trac Block A ya Activity Tracker - Physical [vibeation out
[Activity Traduussponsl (S d - - EErE—rT— Y -
[Activity Tracker - PHjysical Vi Block B | Property Connector
sty Frocegr - Physical
Activity Trackdr - Physical power Subsystem
- Physical [Power Subsystem [activity Tracker - Physical | Tracker Subsystem
Agivity Todde - phyzicsl werSubsysiam Ll Tracker - Phyzical |proceccor subpcter
[lactivity Trackdr - Physical Power Subsystem |Activity Tracker - Physical | seraen]
Ty TTaekqT - Pryaiear IO SUBTy e —
‘Activity Trackdr - Physical Processor subsystem _ laermyTracker - Physical | Power Subsystem
(Activity Trackdr - Physical Proces; Em | Activity Tracker - Physical __|Tracker Subsystem
Activity Trackdr - Physical ——TProcessor Subsystem _|Activity Tracker - Physical __|Screen
‘Activity Teseedr=Physical screen
—Eitiitu Trackdr - Physical Screen |Activity Tracker - Physical Power Subsystem
Part f [ackr - Physical Screen \Activity Tracker - Physical Processor Subsystem
Jacidr - Physical Tracker Subsystem
aftivity Trackde - Physical Tracker Subsystem ___|Adtivity Tracker - Physical __|Power Subsystem
abtivity Trackfr - Physical Tracker Subsystem __|Activity Tracker - Physical | Processar Subsystem
Dby

Block Property Table

This worksheet displays the blocks and their part properties based on how they are defined
in previous worksheets. In addition to the part properties, you can create ports by using the
PortProperty column.

Creating an entry is similar to entries discussed in other sections:
1. Specify the block to which a port has to be created

2. In the PortProperty column, enter a name for the port.

In the example below for the Activity Tracker- Physical block, the PropertyName column
displays the existing part properties from previous worksheets. To create ports, enter the
block name in the Block Name column (column D) and the port name in the PortProperty
column (column G).

2.5 Internal Blocks Table ¢ 25

Activity Tracker -

Physical
A
[] AlBlc ‘ D 3 G
Power g B __ [elockName party => perty
Subsyster— 13 Activity Tracker - Physical Power Subsystem
14 Activity Tracker - Physical Processor Subsystem
/ P2 L5 Activity Tracker - Physical Screen
Processor / .{G_\W racker - Physical Tracker Subsystem
Subsystem’™ 5 17 Activity Tracker - Prysical__ Tight sensor ip
e 18 Activity Tracker - Physical bluetooth out
\ 19 Activity Tracker - Physical TS pressure sensor ip
Tracker 20 Activity Tracker - Physical motion sensor ip
SUbSys'em 21 Activity Tracker - Physical user ip

Block Connector Table

To create connectors between ports owned by the blocks and parts with ports, use the
BlockConnectorTable worksheet. In the example below, the first two columns, BlockName
and PortProperty, represent the owning block and the next two columns represent the
connecting block port information.

The next columns, BlockName and PartName, are used to specify the owner and connecting
parts.

To create the connection between ports, enter the top level block name and its port in the
first two columns, followed by details of the connecting block and port. MapleMBSE will
validate the input and create another row automatically to represent that the connection is
bidirectional.

The last two columns will be highlighted. as shown below.

To complete the connection, enter the block name and part name in their respective columns,
as shown below. The row that was automatically created by MapleMBSE does not require
any input and should be left blank.

26 + 2 The Fitness Tracker Model

BlockName [PortProperty [BlockName: [PortProperty BlockName [PartName:]
|»ﬂ<l|wry Tracker - Physical].“ h {rlo\.nw(|b|uetom!|nul | 1 1
|9n:(essor5uhs'rstem : [ﬁctimy Tracker - Physical |h|ue[om?| out | 1 1

[BlockName [PortPropety [BlockName [Portproperty [BlockName [parthame |

[activity Tracker - Physical [blustooth | Subsystem [t [activity Tracker - Physical [Processor sul |

| [o [activity Tracker - Phys]bluetooth out]

BlockName PortProperty BlockName [Portproperty [BlockName Parthame

Activity Tracker - Physical galvanic sensor ip Tracker Subisy |gatvanic sensor ip [Activity Tracker - Physical [Tracker Subsy

Activity Tracker - Physical heart sensor ip Tracker Subsystem heartsensorip [Activity Tracker - Physical [Tracker Subsy

Activity Tracker - Physical light sensar ip Tracker ¥ ig! ip | Activity Tracker - Physical | Tracker ¥

Activity Tracker - Physical motion sensor ip Tracker Subsy i ip [Activity Tracker - Physical [Tracker Subsy

— T . - — g

|Aﬁivit\' Tracker - Physical USB in Power Subsystem ush ip | Activity Tracker - Physical |Power Subsystem
Activity Tracker - Physif user dispay op Screen userdisplayop [Activity Tracker - Physical |Screen

Activity Tracker - Physichl user ip screen userip [Activity Tracker - Physical [Screen

Activity Tracker - Physicd| vibration out Processor Subsystem vibrationout Activity Tracker - Physical |Processor Subsystem
[activity Tracker - Physicd] wireless connect Processor Subsystem wirel t [Activity Tracker - Physical |Processor Subsystem |
[Power Subsystem 1 powerop |Powerffanagement Unit_ |processor power op Power Sub Power Unit
Power Subsystem | screen power op Power lanagement Unit_|screen power op Power Power Unit
Power Subsystem | trac wer op Power Management Unit_|trackerpower op Power Power Unit
Power Subsystem l uship USB usbip Power use

Processor i | isplayop icati displayop Subsystem |P ication
Processor S | icati processore Processor Subsystem |Py ication
Processor i | powerip icati proc ip Subsystem [P ication
Processor Subsystem] trackerinfoin ProcesgorApplication T fai Processor Subsystem Py ication
Processor Su | useripop licati Subsystem [P ication

Power
H Pﬂ:Subsystem
/ P2
Processor L —

Subsysten: pp; Activity Tracker -

F‘ Physical
\ Tracker | ¢ 53

Subsystem

Property Connector Table

The Property Connector Table is used to connect part properties within the block, as
shown below.

To create a connector between Power Subsystem and Processor Subsystem, as shown
below, enter the block which owns the property in the first column. In this case, enter
Activity Tracker-Physical followed by the owning part name, Power Subsystem. In the
Property Connector section, enter the other property owner, which is again, the Activity
Tracker-Physical and the connecting part, Processor Subsystem. When the entry is valid,
MapleMBSE adds another row automatically to represent that the connection is bidirectional.

2.6 Activity Diagram <« 27

BlockName PropertyName Eroparty Connechor
BlockName | BlockProperty
Activity Tracker
Activity Tracker - Physical
Activity Tracker - Physical |Power Subsystem
Activity Tracker - Physical |Processor Subsystem
Activity Tracker - Physical |Power Subsystem |
| Property Connector |
BlockName PropertyName ‘ BlockProperty | o | BlockProperty |
Activity Tracker
[Activity Tracker - Physical
Activity Tracker - Physical |Power Subsystem Power Subsystem
Activity Tracker - Physical |Processor Subsystem |Processor Subsystem
Activity Tracker - Physical |Power Subsystem Power Subsystem Activity Tracker - Physical |Processor Subsystem
(Activity Tracker - Physical |Processor Subsystem |Processor Subsystem |Activity Tracker - Physical |Power Subsystem
Activity Tracker -
Physical
71—
I ‘I Bk ; Property Connector
BockNme SodPogerty |
Activity Tracker - Physical
... Power ActhityTracker-Physicl _|Power Subsyster
§i —1 P4 _Subsystem thity Trdker-Physical __[PowerSubsystem ety Tacher-Physal__[TrckerSubystem
// facthtyTracer-Physical Power Subsystem [Rctiviy Tracker- Physial_Processor Subsystem
P2 [Acthity Tracker - Physical ~[Power Subsystem [Activity Tracker - Physkal [Sareen |
Processor Activity Tracker - Physical [Processor Subsystem |
Subsystem™ pp [hﬂl\du‘!{iﬁt&f-l’hﬁiﬂ progesser Subsystem [actvity Tragkes - Physical |Powse Su |
—_ Acthty Tracker - Physical | Processor Subsystam |Activity Trackes - Physical _ [Tracker Subsystem
Activity Tracker-Physical |Processor Subsystem | Activity Tracker- Physial [Sereen
\ Tracker ActidtyTradker-Physill | Soreen |
Subsystem Activity Tracker - Physical [Sereen ctivity Tracker- Physial [Power Subsystem
Activity Trackr - Physieal [Sereen ity Tracker - Physical | Processor Subsystem
Activty Tracker-Physial [Tracker Subsystem |
Activity Trackes - Physicll [Tracker Subsystem | Activity Tracker- Physical | Power Subsystem
f acty Tracer - Physal [md:erwwm Rctvity Tracker - Physical_[Processorsubsystem I||

2.6 Activity Diagram

An Activity Diagram is used to define system behavior. The top level system functionality
is initially defined and these defined actions are further decomposed to show the logical
behavior of the system.

Only call behavior actions with pins are used in this model.

28 ¢ 2 The Fitness Tracker Model

Creating Actions for an Activity

Using the Use Case diagram, we have identified that the basic use case for the model is to
track daily activity.

The ActivityTable worksheet is used to create activities, action, control flow and object
flows. To create an activity diagram named, track daily activity, enter the name in the
ActivityName column, as shown below. Once we create the actions for the activity, we
need to now create flow between the actions. In this model, control flows are used only to
represent the start and end of an activity.

To create control flows to denote the start and end of the activity, use the ControlFlowName
column. Following the creation of the control flows, object flows can be created in the same
worksheet.

Enter a name for the object flow in the ObjectFlowName column. As shown in the diagram
below, control flows and object flows are created for the activity diagram, track daily
activity. Linking these flows with actions is discussed in the following section.

Creating Actions for an Activity

Using the Use Case diagram we have identified the basic use case for our model is to track
daily activity. The ActivitysTable worksheet is used to create activities, action, control
flow and object

Final Noda

— ~
- act start
track steps t end
act en
Y display
track sleep cycle —————= gpservation data

‘_“\""‘
Track daily activity — / T~

show calories
track heartrate

provide power

a@
create an Activity Diagram, first create an activity and its elements in ActivityTable. Enter

2.6 Activity Diagram « 29

the name of the activity in column D (ActivityName) as shown above. Once an activity is
created we can create its initial node, final node and its actions in the respective column as
shown. Use column H (Behavior) to allocate a behavior to the actions we created. In order
to allocate a behavior, it should exist as an activity in the ActivityName Column.

Creating Flows

Using the ObjectFlow and ControlFlow Table we can now complete the activity diagram.
To create an object flow between two actions in the ObjectFlow Table, Enter the activity
under which the action was created in ActivityTable under Column D and the action name
in Column E(Action Name Column) and the other action to be link with in Column G and
its activity in Column F. Now MapleMBSE will create the input and output pins for the re-
spective actions. In the case of Behavior being allocated to the action being links,
MapleMBSE will automatically create parameters.

30 < 2 The Fitness Tracker Model

A|B|C D E F G
1
2 [Object Flow]
4 ‘Acliviry Name Action Name |Activ|‘ty Name |Aﬂiun Name I
6 track daily activity
7 track daily activity track heartrate
8 track daily activity track steps
9 track daily activity track sleepeyele
10 track daily activity show calories
1 track daily activity display observation data
12 track daily activity act
13 track daily activity end
14 track daily activity provide power

A|B C D E F G
1
2 [Object Flow |
a |Activity Name Action Name [activity Name |Action Name |
6 track daily activity
7 track daily activity track heartrate
8 track daily activity track steps
9 track daily activity track sleepcycle
10 track daily activity show calories
11 track daily activity display observation data
12 track daily activity act
13 track daily activity end
14 track daily activity provide power
15 track daily activity track heartrate track daily activity display observation data
1«
A B C D E F G
1
2 [Object Flow |
4 [Activity Name [Action Name [activity Name [Action Name]
6 track daily activity
7 track daily activity track heartrate
8 track daily activity track steps
9 |track daily activity track sleepcycle
10 track daily activity show calories
11 track daily activity display observation data
12 track daily activity act
13 track daily activity end
14 track daily activity provide power
15 track daily activity track heartrate track daily activity display observation data
16 track daily activity track steps track daily activity display observation data
17 track daily activity track sleepcycle track daily activity display observation data
18 track daily activity show calories track daily activity display cbservation data
19 track daily activity provide power track daily activity display observation data
an

To create control flow between nodes we follow the same steps we used for creating object
flow, In ControlFlow Table, enter the activity name in Column C(ActivityName) and the
node in Column D(Activity Node) and the action node to be linked with in Column F and
its activity in Column E. Similarly we can link nodes and actions with Control or object
flows.

2.6 Activity Diagram

31

A B/CD

W eae s e

E

ActivityPartition Allocation

Activity Name

Swim Lane

Representing Block

Activity Name

Action Name

connect smartphone

display notification

display observation data

display time

provide power

track daily activity

track heartrate

track sleepcycle

track steps

Control Flow

[Activity Name

JAction Name

|Activity Name

[Action Name.

track daily activity

track daily activity

track heartrate

track daily activity

track steps

track daily activity

track sleepcycle

track daily activity

show calories

track daily activity

display observation data

track daily activity

act

track daily activity end
track daily activity provide power
track daily activity act track daily activity display observation data

track daily activity

display observation data

track daily activity

end

To create an object flow between parameter and an action we use the same method we used
for creating object flow between actions, MapleMBSE will automatically identify the element

type and create the corresponding links.

Allocate Actions to Swim Lanes

32 2 The Fitness Tracker Model

ActivityPartition Allocation

Activity Name Swim Lane Representing Block Activity Name Action Name
connect smartphone
display notification
display observation data
display time
provide power
track daily activity
track heartrate
track sleepcycle

track steps
display observation data P ProcessorApplication
ActivityPartition Allocation
Activity Name Swim Lane Representing Block Activity Name Action Name

connect smartphone
display notification
|display observation data
display time

provide power

track daily activity

track heartrate

track sleepcycle

track steps
display observation data PA Proc
display observation data PA Proc lication display observation data get sleep rate

Before we can allocate actions to a swim lane. We first create swim lanes and assign a block
to the swim lane. BlocksTable tab displays the list of available blocks that can be assigned
to a swim lane. In SwimLanesTable tab ActivityName column displays the activities created
using previous tables. To create a swim lane enter a name in Column G (Swim Lane) and
the block it represents in Column H(Representing Block). Now we have created the swim
lanes with the respective blocks it represents. To allocate an action enter the name of the
activity in column F(Activity Name) and the swim lane name in column G. MapleMBSE
will highlight this record as duplicate field, enter the action to be allocated in column J and
the activity in column I to complete the allocation. MapleMBSE will now accept this as a
valid record and remove the error. Similar we can access different activities we created and
allocate the actions to swim lanes.

Activity Breakdown

To create an activity diagram for an action, use the ActivityBreakdown worksheet. An
action can be further decomposed to more detailed granularity by using the same approaches
discussed in previous sections.

2.6 Activity Diagram

33

A [Activityna
track heartrate | = -
[tcack steos licack steos = =
display cbsenlation data \ track daily cthity
track sleepcycﬁ\ N lm_m
show calories NG
e power | = iractstegs steps out ot

send electric pulse

N \

find altitude €—— check pressure

track steps — determine
cheek L T cthity T) '\r
/ store data ——7 sten.om
send signal /
ObjectFl OBjectil //
ame Activityame | - [Name
QunedParameter
Flow Name AdivityName
eack daily activity
track stegs 11
rack stegs epsont [displeyteteps [racksteps ;

To create an activity diagram for an action, enter the same name in the ActivityName
column, as shown below. This will create an activity diagram, track steps. Using the

ActivityTable worksheet, we can create flows and actions with the same approach mentioned

above.

ActionMame

ActivityName

Erar_k stens

display observation data

track sleepcycle

show calories

provide power

ActionName

ActivityName

track heartrate

Utrack steps

lrack steps

display observation data

track sleepcycle

show calories

provide power

34 < 2 The Fitness Tracker Model

Creating Activity Parameters

When we create activity diagrams for the actions, consistency with the number of input pins
and output pins must be maintained. We create a parameter and specify the direction, as
shown below.

Enter a name in the ParameterName column and its Direction as either in or out. We
create the parameter to show that the track steps activity receives information that is pro-
cessed by actions within track steps and output is sent through a parameter called steps
out.

ActivityName ParameterName Direction
track daily activity

track steps

track steps steps out out

Parameter Flows

The ParameterFlowTable worksheet is similar to that of the ObjectFlowTable worksheet.
The only difference is that we link object flows with an owned parameter of the activity
instead of action pins. Once the activity parameter is created using the Parameters work-
sheet, we create an object flow in the ActivityTable worksheet. The object flow created is
then linked with an action using the object flow table. In the parameter flow table, enter the
activity followed by the parameter, steps out, in the Parameter Name column. MapleMBSE
will highlight the row. Enter the object flow name, display tsteps. At this point, we should
also specify that the parameter used, steps out, is an owned parameter for the activity, as
shown below.

ObjectFlow ObjectFlow
Parameter |Name ActivityName Name |ActivityName OwnedParameter

ActivityName Name Incoming Flow Qutgoing Flow Name ActivityName
track steps

track steps steps out display tsteps track steps 1 steps out track steps

3 State Machine Diagram

This section defines how to create states, define their transitions and the events that trigger
these transitions using MapleMBSE. The configuration file, TWCSysML-StateMa-
chines.MSE defines four worksheets that can be used to create states and define their
transitions. The TWCSysML-StateMachines.MSE file is located in the Application sub-
directory of your MapleMBSE installation directory. This example only covers the case
where a transition is triggered by a signal event. The following package structure is followed:

- Model
-Package
+StateMachine
+Region
+SignalEvent

"l | StateMachines :

=N

35

36 < 3 State Machine Diagram

3.1 How to Create a State Machine Diagram

In the StateMachines worksheet enter Package name as Package, and StateMachine name
as StateMachine. These naming conventions can be changed by modifying the configuration
file.

|Pacl:age StateMachine ISigna IEvent
Package StateMachine
Package touch

Once the state machine is created, we have to define a region in which states will be created.
To create a region, use the Pseudo State Properties worksheet. Enter a name for the region,
as shown in the table below (Regionl is used as default as defined in configuration file).
This table is also used to create the pseudo state (PseudoState column) and final state (Fi-
nalState column) that defines the start and end of the state machine. Enter a name for the
states, as shown below. We define the transition from the pseudo state in this worksheet,
once we have created other states, and its transition in the Transition Matrix Table work-
sheet.

[stateMachine [Region |Pseudostate [rinalState [scumeState [Transition [Targetstate
SateMachine
StateMaching Regionl

[stateMachine [Region |Pseudostate |Final State [source tate Transition [Target State
StateMaching

StateMachine Regionl

StateMaching Regionl off

StateMaching Regionl On

3.2 How to Create States and Transitions

To create a transition between states in the State Transition Table, enter the source state
in the SourceState column and the target in the TargetState column, as shown below.
Once we create these transitions between the states, we can edit the properties of these
transitions in TransitionProperties worksheet.

3.3 How to Create Triggers with Signal Events < 37

|Sourcestate

|argetstate |

Charging

DisplayData

Off

on

SleepMode

Tra :king

|sourcestate

|Targetstate |

Charging

DisplayData

Off

On

SleepMode

Tracking

On

Tracking

Trac.'n:ing

DisplayData

Tracking

Charging

Charging

SleepMode

Tracking

Off

3.3 How to Create Triggers with Signal Events

Initially, the Transition Name column will be displayed as a blank column since we haven’t
named the transitions. Enter a name for the transitions so they can be identified to create a
trigger and assign a signal event. Enter the Transition name in the Transition Name column
followed by the Signal Event name we created in StateMachine Table. MapleMBSE will
accept this as a valid input and automatically populate the other fields.

38 < 3 State Machine Diagram

Trangition Name Source State Target State Signal Event
Tracking off
On Tracking
Tracking DisplayData
Tracking Charging
Charging SleapMode
Transition Name Source State Target State Signal Event
usercommand) power Tracking Off
poweron On Tracking
touch Tracking DisplayData
ush connect Tracking Charging
Charge/Mon-Tracking Charging SleepMode
Transition Name Source State Target State Signal Event
usercommand/power Tracking off
pewerOn [On Tl.lﬂ|l'|l
towch Tracking DisplayData
ush connect Tracking [Charging
Charge/Non-Tracking (Charging sleepMade
touth Tracking DisplayData touth
ush connect Tragking |Charging wsb connect

4 Count Down Timer Model

The example is create with the following package structure
Model

-Requirements

-Use Case

-Timer

To create a Timer model we define the simplest requirements that is expected of the Timer.
The model is required to have functions that enable the user to start, reset, pause and stop
the timer. When Timer reaches zero, the user must be notified and the timer should continue
counting down. Keeping these as the only requirements, a Requirements table is initially
created. From these requirements we identify the actors and use cases. We create a Timer
block to define its behavior based on these identified Use Cases.

To define the Timer properties, we create operations and properties to the Timer block. To
enable the user to reset, stop, pause etc., we create these as signals so the user can command
the system when it is being executed. State Machine and Activities are used to define the
system behavior and its different states of operation.

!
| RequirementsTree ~ RequirementsSatisfyTable A=Al e CountDown Timer™ SignalTable ~ TimeEventTable .

The RequirementsTree and UseCases worksheets are used to define the requirements that
should be met by the model and its use cases. The CountDownTimer, SignalTable, and
TimeEventTable worksheets are used to create blocks and events that will trigger the system
to transition to a different state.

TimerBehavior StateMachineProperties TransitionTable «

The TimerBehavior worksheet is used to create a StateMachine that will define the states
at which the system will exist and its behavior at different states. It is also used to create
operations and activities that will define system behavior. The StateMachineProperties
worksheet is used to create the states and the TransitionTable worksheet is used to define
their transition and events that triggered them.

“ActivityNodeTable ~ OpaqueBehaviorTable ~ ~ ActivityObjectFlowTable ~ ~ ActivityControlTable

ActivityNode Table and OpaqueBehavior Table is used to create activity nodes and behaviors.
ActivityObjectFlow table and ActivityControlTable is used to create flows between the
actions and nodes created in previous tables.

39

40 + 4 Count Down Timer Model

The StateBehaviorTable, StateBehaviorFlowTable and StateControlFlowCondtionTable
worksheets are similar to that of previously mentioned worksheets. The only difference
being that they are used to create activity flows that define states entry behavior.

4.1 Requirements Table

The Requirements Table worksheet is used to create Requirements. The configuration file
is defined in a way that this table can be use to create two levels of requirements. As shown
below, requirements for the system are created.

RequirementsSatisfy Table worksheet is used to create a Satisfy relation between the Re-
quirements, Blocks and its properties. This table will be used to verify if the requirements
are met once the system has been created.

Requirements Table

Requirement Requirement 2nd Level

ID* Name ID* |Name Specification
1{Timer
1|Timer 1.1|Accurate The timer should count down every 1 second.
1|Timer 1.2|Functions The timer must have functions to start, reset, pause and notify user.
1|Timer 1.3|Working The timer should continue counting even after 0, until user signals to stop.
1|Timer 1.4|Notify The timer should notify the user at 0.

4.2 UseCase Table

The Actors tab is used to identify the actors, while the UseCases tab is used to associate
these Actors with UseCases.

To create an association between Actor and UseCase, enter the Actor Name in the Actor
column, followed by the UseCase in UseCasel column.

To create an association between UseCases, Enter the Actor name in Actor column followed
by the UseCase name in the UseCasel column and associating UseCase in the Associated-
UseCase2 column.

4.3 CountDownTimer Table « 41

The UseCases table is created as shown below :

Use Case Actors

| Actors]
| User I
Actor UseCasel Associated UseCase2 Associated UseCase3

User count down
User count down notified
User count down notified count down
User count down pause
User count down pause count down
User count down reset
User count down reset count down
User notified
User notified count down
User notified count down notified
User notified count down pause
User notified count down reset
User pause
User pause count down
User pause count down notified
User pause count down pause
User pause count down reset
User reset
User reset count down
User reset count down notified
User reset count down pause
User reset count down reset

4.3 CountDownTimer Table

This table is used to create the Timer block, signals & events that will be used later in cre-
ating the model.

To create a block, enter the name in the Block Name column.

To create signals, enter a name for the signal in the Signals column, and its package name
in the PackageName column

42 « 4 Count Down Timer Model

Note: Two kinds of events can be created in this worksheet, Signal events and Time events.

These events are created based on the signals that are being used.

Timer Events & Signals

s Events Timed Event Instances
[CountDownTimer
< imer Timer
(CountDownTimer instance
[CountDownTimer reset
CountDownTimer notified
[CountDownTimer timeup
CountDownTimer start
[CountDownTimer ause
[CountDownTimer stop
[CountDownTimer Fesume
Ci imer startEvent
[CountDownTimer stopEventA
< imer auseEvent
CountDownTimer
[CountDownTimer stopEventB
[CountDownTimer
[CountDownTimer resetEvent
[= imer netifyEvent
[CountDownTimer timeupEvent
c imer TimeEvent
Signal Table

The Signal table is an extension of the previous section. Here, we relate the signals that
were created with the SignalEvent. Later in the model, we will use these signal events as
triggers to define transition between states.

To assign a signal to SignalEvent, enter the SignalEvent name from the previous table and
its corresponding signal in the Signals column.

4.3 CountDownTimer Table « 43

SignalEvent

notifyEvent

Sig_lnals

timeupEvent

startEvent

stopEventA

pauseEvent

resumeEvent

stopEventB

stopEvent

resetEvent

| SignalEvent

Signals

notifyEvent

notified

timeupEvent

startEvent

stopEventA

pauseEvent

resumeEvent

stopEventB

stopEvent

resetEvent

Time Event Table

The Time Event table is used to create the duration for the timed event.

Enter the event name in the Timed Event column, followed by a name for the duration in

the Expression Name column.

Next, enter the required time duration in the Duration column. Assign the duration to the
TimeEvent by entering the event and expression name in their respective columns.

44 + 4 Count Down Timer Model

Time Event & Duration

Timed Event Expression Name Duration

TimeEvent
Time Event & Duration

Timed Event Expression Name Duration
TimeEvent
TimeEvent time

4

Time Event & Duration

Timed Event Expression Name Duration
TimeEvent

TimeEvent time

TimeEvent time 1s

Now we have created the necessary Events and Signal that will be used to define the State
and Transition for the system.

4.4 Timer Behavior Table

Using the Timer Behavior table, we will define properties, operations and the behavior aspect
of the system using State Machines and Activities.

To create a property, enter the block in the Block Name column and its property in the
Block Property column.

Based on the use case, we will create the operations expected of the system: restart, count-
down and notify.

To create operations, enter a name for the operation and the block in the respective columns.
Next, we will create a StateMachine to define the system.

Enter the block name in the Block Name column and, in the same row, enter a name for
the StateMachine in the StateMachine column. This will create a StateMachine for the
Timer Block as shown below.

To make sure that the Timer Block exhibits the behavior of the StateMachine entered in the
previous step, enter the StateMachine in the Block StateMachine Behavior column. In
doing this, we are defining the state machine as a classified behavior.

Next, we create activities based on the operations created for the block.

4.5 StateMachine Properties Table + 45

Enter the block name in the Block Name column and the activity name in the Activities
column, we have now created activities for the block Timer. In the Block Operations Be-
havior column, enter the respective operations for the activities created.

Block Behavior Properties

Timerstate
Timerstate
Timerstate
Timerstate
Timerstate
Timerstate
Timerstate
TimerState

Ti

Timerstate
TimerState
Timerstate

Trimerstate

Block StateMac
Timerstate
Timerstate
TimerState
TimerState
Timerstate
TimerState

restart Timerstate
countdown Timerstate
notify TimerState

4.5 StateMachine Properties Table

Next, we define the states and region for the TimerState we created previously.
Enter the StateMachine name followed by the region name in the Region column.

Create the Initial and Final states and the states at which the system will exist in respective
columns, as shown below.

46 + 4 Count Down Timer Model

StateMachine Properties

State Machine Region Initial State States Final State
TimerState

TimerState Region

TimerState Region start

TimerState Region end
TimerState Region end

TimerState Region notify

TimerState Region paused

TimerState Region ready

TimerState Region running

TimerState Region stopped

Transition Table

To create a transition between states with triggers, enter a name for the transition in the
Transitions column (a row will be added with Source and Target state cells highlighted).

Enter the source state in the Source State column and the target state in the Target State
column to create a transition between them.

To add a trigger that starts the transition, enter the transition name and trigger name. The
source and target state fields will be updated automatically. To add an event to the trigger,
enter the event name in the appropropriate column. For example, to assign startEvent as a
trigger between the start and ready states, enter the transition name, then provide a name
for the trigger. Since startEvent is a signal event, it is populated in the Signal Event column,
as shown.

4.6 ActivityNodeTable « 47

State Transition Properties

Transitions [Source State [Target State [Trigger]
st-rdy |start |readv | ll

4

D E F
State Transition Properties

G H I

Transitions [Source State Target State Trigger Signal Event Time Event
st-rdy ‘starl ready
|s_t-rdv start ready rdy_sig

4

State Transition Properties

Transitions [Source State Target State Trigger [Signal Event Time Event
st-rdy ‘start ready l
st-rdy }start ready rdy sig lstartEvenl
State Transition Properties

Transitions Source State Target State Trigger Signal Event Time Event
ntf-run notify running notify_time notifyEvent
ntf-run |notify running
pau-run paused running
'p_au-run paused running pause_run resumeEvent

au-st| aused S(OEEEU
pau-stp paused stopped pause_stp stopEvent
rdy-run ready running
rdy-run ready running ready_trig startEvent
run-ntf running notify
run-ntf running notify run_notify timeupEvent
run-pau running paused
run-pau running paused ready_pause pauseEvent
run-run running running
run-run running running run TimeEvent
run-stp running stopped
run-stp running stopped ready_stop stopEventA
|ste-end stopped end
stp-end stopped end stp_end stopEventB
stp-rdy stopped ready
stp-rdy stopped ready stp_rdy resetEvent
st-rdy start ready
st-rdy start ready rdy_sig startEvent

4.6 ActivityNodeTable

Next, we define the activity created in the TimerBehavior table,

To create actions and flow for an activity, enter the name of activity to which the above
mentioned elements will be created.

In the Call Behavior Actions column, enter a name to create call behavior actions.

Similarly, this table is used to create initial an final nodes, forks, opaque behaviors, decision
nodes, and send signal actions. Each of which can be created by providing a name for the

node and its activity.

48 « 4 Count Down Timer Model

To assign the signal that will be send when a signal action is invoked, enter the name in the
Send Signal Action column and the signal that will be sent in the Signal column (signals
that were created in CountDownTimer table).

Block Activity Behavior

Name | Call Behavior Actions d | Acti Signal
|

Block Activity Behavior

ivity Name | Call Behavior Actions Initial Node [Final Node Fork Node Behavior |Decision Node |Flow Final Node _|Send Signal Action Signal
lcountDown Fin
lcountDown sendsignal timeup
notifyuser Start
notifyUser end
notifyUser notified
resetTime start
resetlime end | | | |
resetTime Fork | | | |

Opaque Behavior Table

This sheet is used to assign OpaqueBehavior to an action and define its parameter and
equation.

To assign OpaqueBehavior to an action, enter the Opaque Behavior created in previous
table in the Opaque Behavior column.

Note: The available actions will be automatically listed in Opaque Action column, as shown
below.

4.6 ActivityNodeTable + 49

To create an equation, enter it in the Opaque Equation column.

Opaque Behavior Properties

Opaque Behavior Name Parameters Direction Opaque Equation
Opq_behavior

Opaque Behavior Properties

Opagque Behavior Name Parameters Direction Opaque Equation
Opq_behavior time_out=t_in-1

To manipulate the parameters and direction, we first need to create links between the actions.

Activity ObjectFlow Table
This table is used to create object flow between activities.

To create object flow between actions, enter the source action name in column E (Activity
Node column) and its activity in the ActivityName column followed by the target action
information in column G(ActivityNode column) and its activity in the Activity Name
column.

The object flows between the actions are created, as shown below.

ObjectFlow Table
Activity Name Activity Node Activity Name Activity Node
countDown
countDown |get_updatedvalue countDown Fork
countDown Fork countDown read_time
countDown Fork countDown update_time
countDown read_time countDown ForkN
countDown evaluate_Expression countDown update_time
countDown ForkN countDown evaluate_Expression
countDown ForkN countDown Decision
notifyUser
resetTime
resetTime Fork resetTime update newValue
resetTime Fork resetTime new_Input
resetTime |get_oldValue resetTime reset_oldvalue
resetTime reset_oldvalue resetTime update_newValue
resetTime new_Input resetTime update_newValue
resetTime reset_toZero resetTime reset_oldValue
resetTime |get_newValue resetTime Fork

Activity ControlFlow Table

The Activity Control Flow table works similar to the Object Flow table,

50 ¢ 4 Count Down Timer Model

Enter the source action and activity name in the first two columns, followed by the target

activity and action name.

Cli Name Ad‘.wy Node m:ne ﬁm Node

countDown
countDown get_updatedvalue
countDown Fork

countDown Start

countDown Start countDown read_time
countDown Emd

countDown read_time

countDown read_time countDown evaluate_Expression
countDown update_time

countDown update_time countDown Decision
countDown evaluate_Expression

countDown evaluate_Expression countDown update_time
countDown ForkN

countDown Decision

countDown Decision countDown Fin
countDown Decision countDown sendSignal
countDown Fin

\countDown sendSignal

countDown sendSignal countDown End

notifyUser

natifyUser sendNotification

notifyUser sendNotification notifyUser notified
notifyUser Start

notifylUser Start notifylser sendNotification
notifyUser End

notifyUser notified

notifylser notified notifylser End

resetTime

resetTime Fork

resetTime Start

resetTime Start resetTime reset_oldvalue
resetTime End

resetTime get_oldvalue

resetTime reset_oldValue

resetTime reset_oldValue resetTime update_newValue
resetTime new_Input

resetTime reset_toZero

resetTime get_newValue

resetTime update_newValue

resetTime update_newValue resetTime End

Once we have completed the Behavior flow tables, we have to sync the input and output
flow of Opaque Behavior and its call action. To do this, go back to the Opaque Behavior

table.

The Input and Output pins will be displayed as argument and result by default. We change
this value based on the Opaque Equation parameter. Rename the argument in both tables
to time_in and time_out instead of result and argument for the Opq_behavior.

4.7 State Behavior Table -«

51

Opaque Action->OpaqueBehavior

Opaque Behavior Name |Parameters Direction Opague Equation Opague Action Opague Behavior Input Pin Output Pin
Opg_behavior time_out=time_in-1 evaluate_Expression Opq_behavior

Opg_behavior result out time_out=time_in-1 evaluate_Expression Opg_behavior argument

Opg_behavior argument in time_out=time_in-1 evaluate_Expression Opg_behavior result

Opaque Behavior Properties

l

Opaque Action-->0paqueBehavior

(Opaque Behavior Name |Parameters Direction Opague Equation Opague Action Opaque Behavior Input Pin Output Pin
Opg_behavior time_out=time_in-1 evaluate_Expression Opq_behavior

Opg_behavior time_out out time_out=time_in-1 evaluate_Expression 0pq_behavior time_in

Opg_behavior time_in in time_out=time_in-1 evaluate_Expression 0pg_behavior time_out

We have created state machines and activities to define the behavior of the system. As of
now StateMachine and the activities are defined as seperate behaviors of the same system.
In the following section, we will define how the system behaves at each state using the
activities we created.

4.7 State Behavior Table

The State Behavior table will list the states created in the StateMachine Properties work-
sheet.

Next, we will assign an entry behavior to the system.

In the example, we will create an entry behavior to the running state. Enter the state name
in the State Name column.

In the State Entry Behavior column, enter a name to create an entry behavior (decrease
in this example).

Next, we will define nodes and actions to the entry behavior, as shown below.

To assign a behavior to the call actions we created in an earlier section, enter the behavior
you want to assign in the Behavior column adjacent to the call actions.

52 « 4 Count Down Timer Model

State Name State Entry Behavioir Initial Node Final Node Call Behavior Actions |Behavior

end

notify

paused

ready

running

stopped

State Name

end

State Entry Behavioir

State Entry Behavior Table

Initial Node

[

Final Node

Call Behavior Actions |Behavior

notify

paused

ready

running

stopped

running

decrease

State Name
end

State Entry Behavioir

Initial Node

l

Final Node

Call Behavior Actions |Behavior

notify

paused

ready

running

stopped

running

decrease

running

decrease

running

decrease

start

running

decrease

decrease

{

State Name State Entry Behavioir Initial Node Final Node Call Behavior Actions |Behavior

end

notify

paused

ready

running

stopped

running

decrease

running

decrease

start

running

decrease

running

decrease

decrease

countDown

State Behavior ControlFlow Table

Creating behavior control flows is similar to creating activity control flows.

Enter the source action and activity in the first two columns and target action and activity

in the next column.

4.7 State Behavior Table * 53

State Activity State Activity Node |State Activity State Activity Node
decrease

decrease end

decrease start

decrease start decrease decrease
decrease decrease

decrease decrease decrease end
notify

notify start

notify start notify notify
notify end

notify notify

notify notify notify end
reset

reset start

reset start reset reset
reset end

reset reset

reset reset reset end

test

We have now created the control flows. When we defined a requirement initially, we stated
that the system should notify the user when time reaches zero and should continue counting
down even after reaching zero. To achive this, we will set a guard condition to the control
flow of the merge node created in earlier sections. In a previous section, we have already
create a notify behavior to the state and to send a signal to user.

State ControlFlow Condition Table

In the ControlFlow Condition table, existing contol flows will be listed based on previous
inputs.

To create a guard condition, enter the state activity name in the State Activity column fol-
lowed by the source and target activity node information and enter a guard condition.

54 .

4 Count Down Timer Model

resetTime

State Behavior ControlFlow Condition Tabl

countbDown

notifyUser

countbDown D n

Fin

countDown Decision

countbown evaluate expression update_time
countDown read_time evaluate_Expression
countDown sendsignal End

countDown start read_time
countDown update time D. n

notifyUser notfiea End

notifyUser sendNotification notified

notifyUser start sendNotification
resetTime reset_oldValue update_newValue
resetTime start reset_oldvalue

update_newValue

[Ena

countDown

State Behavior ControlFlow Condition Table

[start

read_time

read_time evaluate_Expression
update_time [Decision
levaluate Expression lupdate_time
Decisios Fin
Decision
[End
[sendNotification [notified
start ifi
notified [End
[Start reset_oldvalue
reset_oldValue lupdate_newValue
resetTime update_newValue [End
Decision Fin time>0 | | time<q|

State Behavior ControlFlow Condition Table
State Activity Node g

[StateActivity ~ [State Acti Control Guard Condition
countbown
start read_time
read_t B xpression
update_time Decision
evaluate update time
Decision Fin
countDown Decision i
countDown sendSignal End
notifyuser
notifyuser notified
notifyuser Start send
notifyuser notified End
resetTime
resetTime start reset_olavalu
resetTime reset_sldvalue update_newvalue
resetTime update_newvalue End
Decision Fin time>0] |time<0
State State Node (Source, State Node Control Guard Condition
countDown
countDown Start read_time
countDown read_time evaluate_Expres
countDown update _time
countDown evaluate_Expression update_time
countDown Decision Fin
countDown Decision Fin time=0] | time<0
countDown Dec sendsignal
countDown Decision sendsignat time=0
countDown End
notifyuser
notifyUser sendNotification notified
notifyUser art sendNotification
notifyUser End
resetTime
resetTime Start reset_oldvalue
resetTime reset_oldvalue update_newValue
resetTime update_newvalue End

5 Turbofan Engine Model

5.1 Introduction

This example model is used to identify design points of a turbofan engine. MapleMBSE
and Cameo Systems Modeler™ were used to create a turbofan example model. The design
point calculations are based on ideal gas turbine cycle analysis.

Initially, a mission statement is defined to specify the scope of the model and to identify
design points at Mach number 0.8 and operating altitude between 350001t to 45000ft with
a bypass ratio between 6-8.

5.2 Turbofan Model

Y

2 -
E} o
- _E.'
-8 3
g]
=]
1 2 3 A 5 5 7 8

The turbofan system is defined as shown in the diagram above. The system consists of a
twin-spool configuration, with a high pressure turbine driving a high pressure compressor,
a low pressure turbine driving a low pressure compressor, and a fan. Temperature and
pressure are identified at the design points, as shown in the figure. The primary goal is to
identify the design points with optimum SFC (specific fuel consumption) value.

5.3 Requirements

Once the mission statement is defined, system requirements for the turbofan are also stated
for each subcomponent in terms of target efficiency, pressure ratio etc., which have to be
satisfied. The SystemRequirements worksheet in MapleMBSE is used to define the spe-
cifications and target values that have to be achieved. In addition to the system specifications,

55

56 <« 5 Turbofan Engine Model

analysis requirements are created to define the input values which will be used to analyze
the model.

To maintain traceability between system level requirements and mission level requirements,
the DeriveRequirements worksheet in MapleMBSE is used to create derived relationships
between requirements.

5.4 ValueType

The ValueTypesTable and UnitQuantityKind Table worksheets are used to define units
and type of values that will be used to define the system. These valuetypes are used to specify
the type of value properties of the system to be modeled.

5.5 Constraint Blocks

Constraint blocks are created and constraints that will be used in the system are captured
using the ConstraintProperties worksheet. Similar to value types, these blocks are used
to specify the type the constraint property of the system that will be defined.

5.6 System Model

The Turbofan Blackbox is used to specify the properties of the turbofan in terms of values,
subcomponents and ports through with the system will interact.

Once the subcomponents are created we now define the values and constraint properties,
then type them to valuetypes and the constraint block created. A specific worksheet view
is created in MapleMBSE to show components values, constraints and their types.

An Analysis block is created to provide value exchange between the subcomponents. The
Analysis block provides the default values with which the analysis is performed and also
receives the results of analysis.

5.7 Results

The InstanceResults table is used to display the results of analysis performed in the model
using simulation toolkit in Cameo Systems modeller. In MapleMBSE the results are mapped
to Excel graph for visualization. This results worksheet is treated as read-only and used to
only visualize the results of analysis at different altitudes.

5.8 References * 57

To create a new instance:

1. Create a new instance specification by providing a name in the Instance Specification
column in InstanceTable worksheet and type “Analysis Block” as the name of the block
in the Instance of Block column.

2. Define the feature and corresponding value with which the new analysis has to be per-
formed, required input values to be created are ByPassRatioA and targetEfficiency hp-
Turbine.

3. Once the analysis block is defined, specify the inlet properties by creating a new instance
for the InletConditions block, similar to the above method. The required values in this
case are Ta(inlet static temperature in K) and Pa (inlet static pressure in bar).

4. Commit the changes to Teamwork Cloud.

5. Open the model in Cameo or Magic Draw, then create a new block diagram in the
Newlnstance package, drag and drop the analysis block instance.

6. Drop the inletConditions instance into the analysis instance to create a new feature instance
for the Analysis block.

7. Right-click the analysis instance and select simulate to run the analysis.

8. Export the results of analysis as new instance into the Result package under NewlInstance
then commit to Teamwork Cloud.

9. Reload MapleMBSE to see the results in the NewInstanceResults worksheet.

To maintain the traceability between the requirements and the modeled system modeled,
use VerifyRequirementsMatrix to have a verify relationship between system requirements
and value properties of the block. By creating this verify relation, now we have traceability
from system values to system requirements and from system requirements to mission re-
quirements.

The RequirementsTraceability worksheet displays all the requirements from the model
and its relationships such as trace, verify, derived with other model elements.

5.8 References

1. Cohen, H. Rogers. G. and Saravanamuttoo, H. (1996). Gas turbine theory. Harlow:
Pearson education.

2. Sanford Friedenthal. (2015). A Practical Guide to SysML, 3rd Edition. Morgan Kaufmann
Publishers.

58 ¢ 5 Turbofan Engine Model

6 UAV Model

6.1 Introduction

This model uses the Object Oriented System Engineering Method (OOSEM) to design a
conceptual model of an Unmanned Aerial Vehicle (UAV). The primary use of UAV in
consideration is to assist forest fire fighting operations in remote areas. The sample model
shows a part of the OOSEM workflow to identify system requirements.

Identify current
[Analyse Stakeholder Meeds]

Fimd current limitations Find stakeholdar
of the existing system needs

Identity mos and

Define the missien -
requirements

Identify the scope of
sysem to be deslgned

Identify operating Create system
domain use cases

SemE——

SIS SRR

6.2 Analyze Stakeholder Needs

To identify the needs of stakeholders, in this case the fire department, the current operating
domain is modeled to find the existing limitations and expectations of the fire department.
The existing domain is captured using the block definition diagram represented in a table
format in the OperatingDomain worksheet. A causal analysis is performed to identify the
factors that are of interest to the fire department operation [6]. This causal analysis also re-
veals the present limitations in the fire department operation. At this stage, we have identified
the needs of stakeholder based on which we will derive the mission requirements.

Identify System
Requirements

59

60 < 6 UAV Model

6.3 Mission Requirement

To determine the scope and mission of the UAV model, we first identify the measure of
effectiveness based on the stakeholder needs analysis. Secondly, we define the operating
domain in which the system to be modeled will operate. The operating domain is represented
using a block diagram and shown in table format using the OperatingDomainUAV work-
sheet. We identify the use cases to determine the high level behavior of the system and its
interaction. Next, from the measure of effectiveness and the operating domain, we can define
the Mission Requirements and stakeholder requirements from the stakeholder needs that
we identified.

6.4 System Requirements

Before identifying the system requirements, we define units, and interfaces that will be used
by the system of interest. A separate package called Interface is create using the Interfa-
ceTable to contain the flows and signals that will be used in the model.

System Behavior

To find the system requirements, we initially define the UAV blackbox that displays: ports
through which the system interacts, its parts, and its values. In addition, we also define the
operations that are expected of the system, and the method to achieve it in terms of activities.
The UAVBIlackBox worksheet displays the model elements mentioned above. Now we
define the system behavior and represent states at which the system will operate and its
events. On identifying the mission profile of UAV, we create detailed states at which the
system should operate. Following this, we use activities to define system behavior. Based
on the use cases, we create the activities since our mission is to control forest fires and we
are still in the conceptual phase. We define system behavior based on this activity.

Weight Estimation

Once we have defined the system behavior we need to determine the system specification
in order to create the system requirements. To identify the general design requirements the
weight of the UAV is first estimated followed by sizing and identifying critical parameters.
The WeightEstimationTable worksheet displays the value properties and constraint prop-
erties need to estimate the weight of UAV. This worksheet also has tables created in excel
that displays specifications of similar aircraft and estimation constants from historical data
[1]. Based on the mission profile the parameter values can be altered based on payload,
range, endurance, etc. when satisfactory values are determined the values are updated to
WeightEstimationBlock and saved to the model in Teamwork Cloud.

6.5 References * 61

Wing Area Estimation

To determine the sizing we initially create the constraints using the WingAreaConstraint
worksheet. Similar to the weight estimation worksheet, the WingAreaEstimation worksheet
is used to find wing area by iterating key parameters. Using the matching plot technique
[2] Wing loading vs Thrust loading is plotted from which we identify the wing area.

We have estimated the weight and wing area based on which other design parameters can
be further evaluated. This example model covers the conceptual phase from stakeholder
need analysis to identify system requirements.

6.5 References

1.

Austin, R. (2010). Unmanned air vehicles: UAVS design, development, and deployment.
Chichester, West Sussex, and U.K.: Wiley.

. Raymer, D. P. (1992). Aircraft design: A conceptual approach. Washington, D.C.: ATAA.
. Sadraey, M. H. (2017). Unmanned aircraft design: A review of fundamentals. San Rafael,

CA: Morgan & Claypool.

. Sadraey, M. H. (2013). Aircraft design: A systems engineering approach. Hoboken, NJ:

Wiley.

. Simard, A. J., & Forster, R. B. (1972). A survey of air tankers and their use. Ottawa:

Forest Fire Research Institute.

Sanford Friedenthal. (2015). A Practical Guide to SysML, 3rd Edition. Morgan Kaufmann
Publishers.

. GLOBAL HAWK SYSTEMS ENGINEERING CASE STUDY.pdf. (n.d.). Retrieved

from https://www.scribd.com/document/409826283/GLOBAL-HAWK-SYSTEMS-
ENGINEERING-CASE-STUDY -pdf

Firefighting Aircraft Recognition Guide - California - PDF Free Download. (n.d.). Re-
trieved from https://docobook.com/-firefighting-aircraft-recognition-guide-california.html

62 <+ 6 UAV Model

7 FMEA Template

7.1 Introduction

This model is used to perform FMEA analysis by accessing SysML model elements from
Teamwork Cloud server. This example shows a FMEA process to identify possible failure
modes of system functions defined in conceptual design of a UAV; however this template
can be used to perform FMEA on different model elements by specifying appropriate path
and elements in the configuration file.

Custom
Create identified stereotyped
failure modes as

SysML model

elements

model elements

iterative Create a FMEA
process

Update maodel to Add mitigating actions
meet the new for failure modes as

Calculate RPN

The FMEA process is performed as shown in the figure, system functions from the model
are accessed and failure modes are identified. Further we identify severity, occurrence and
detection for the failure modes and calculate the RPN (Risk Priority Number). Mitigating
actions for identified failures are created as new requirements. The complete process is
saved back to the teamwork cloud model.

7.2 FMEA

The FMEAMatrix worksheet is used to identify new failure modes for the system function
and to create a dependency (identifiedFM). Once we create new failure modes, we use the
FMEATable worksheet to provide a detailed analysis of the potential failure by specifying
S, O and D from which RPN is calculated.

requirements Requirementsinto the
SysML model

63

64 « 7 FMEA Template

7.3 Recommended Action

In this process, recommended actions are captured as requirements that can be saved back
to the model. The RequirementFMEAMatrix worksheet is used to create a custom depend-
ency (deriveFMEA) between identified FMEA and recommended actions. The FMEARe-
quirementTable worksheet is used to add specification to the new requirements created as
a result of this analysis.

To use the custom FMEA template:

1.
2.

4.

Add the TWCSysML.mdzip model to the teamwork cloud server.

In Cameo Systems Modeler or Magic Draw, Right-click CustomStereotypes profile—
Project Usage —Export Packages to New Server project.

. In desired project File— Project Usage —Server Project select the exported profile from

previous step.

Update path in the MSE file to get model elements.

7.4 References

1.

Kratzke, R. (2018). Failure Modes Effects Analysis in MBSE. [ebook] Available at: ht-
tps://www.incose.org/docs/default-source/texas-gulf-coast/tgcc-conference-2018/2018-
papers/kratzke-2018-incose-presentation-(for-public-distribution).pdf?sfvrsn=db4796c6 2
[Accessed 22 May 2019].

. Publishing, R. (2019). Failure Mode and Effect Analysis - FMEA - and Criticality Ana-

lysis - FMECA. [online] Weibull.com. Available at: https://www.weibull.com/ba-
sics/fmea.htm [Accessed 22 May 2019].

	MapleMBSE Application Guide
	Contents
	Introduction
	1 Blocks in MapleMBSE
	1.1 Blocks Table
	Creating a Block

	1.2 Creating Association, Aggregation and Composition
	1.3 Creating Direct Association, Aggregation and Composition
	1.4 Block Generalization, Values and Operation
	1.5 Constraint Blocks

	2 The Fitness Tracker Model
	2.1 Packages
	2.2 Requirements Table
	Creating Requirements

	2.3 Use Case Table
	Creating a Use Case Table

	2.4 Blocks Table
	Blocks Tree
	Block Satisfaction Matrix

	2.5 Internal Blocks Table
	Block Property Table
	Block Connector Table
	Property Connector Table

	2.6 Activity Diagram
	Creating Actions for an Activity
	Creating Actions for an Activity
	Creating Flows
	Activity Breakdown
	Creating Activity Parameters
	Parameter Flows

	3 State Machine Diagram
	3.1 How to Create a State Machine Diagram
	3.2 How to Create States and Transitions
	3.3 How to Create Triggers with Signal Events

	4 Count Down Timer Model
	4.1 Requirements Table
	4.2 UseCase Table
	4.3 CountDownTimer Table
	Signal Table
	Time Event Table

	4.4 Timer Behavior Table
	4.5 StateMachine Properties Table
	Transition Table

	4.6 ActivityNodeTable
	Opaque Behavior Table
	Activity ObjectFlow Table
	Activity ControlFlow Table

	4.7 State Behavior Table
	State Behavior ControlFlow Table
	State ControlFlow Condition Table

	5 Turbofan Engine Model
	5.1 Introduction
	5.2 Turbofan Model
	5.3 Requirements
	5.4 ValueType
	5.5 Constraint Blocks
	5.6 System Model
	5.7 Results
	5.8 References

	6 UAV Model
	6.1 Introduction
	6.2 Analyze Stakeholder Needs
	6.3 Mission Requirement
	6.4 System Requirements
	System Behavior
	Weight Estimation
	Wing Area Estimation

	6.5 References

	7 FMEA Template
	7.1 Introduction
	7.2 FMEA
	7.3 Recommended Action
	7.4 References

