
MapleMBSE Application Guide

Copyright © Maplesoft, a division of Waterloo Maple Inc.
2019

MapleMBSE Application Guide

Contents
Introduction ... v
1 Blocks in MapleMBSE ... 1

1.1 Blocks Table .. 1
Creating a Block ... 2

1.2 Creating Association, Aggregation and Composition 3
1.3 Creating Direct Association, Aggregation and Composition 4
1.4 Block Generalization, Values and Operation .. 6
1.5 Constraint Blocks ... 8

2 The Fitness Tracker Model .. 11
2.1 Packages ... 11
2.2 Requirements Table ... 12

Creating Requirements ... 12
2.3 Use Case Table ... 14

Creating a Use Case Table .. 15
2.4 Blocks Table .. 16

Blocks Tree .. 16
Block Satisfaction Matrix ... 23

2.5 Internal Blocks Table ... 23
Block Property Table ... 24
Block Connector Table ... 25
Property Connector Table ... 26

2.6 Activity Diagram .. 27
Creating Actions for an Activity ... 28

3 State Machine Diagram .. 35
3.1 How to Create a State Machine Diagram ... 36
3.2 How to Create States and Transitions .. 36
3.3 How to Create Triggers with Signal Events .. 37

4 Count Down Timer Model .. 39
4.1 Requirements Table ... 40
4.2 UseCase Table .. 40
4.3 CountDownTimer Table ... 41

Signal Table ... 42
Time Event Table .. 43

4.4 Timer Behavior Table .. 44
4.5 StateMachine Properties Table .. 45

Transition Table .. 46
4.6 ActivityNodeTable .. 47

Opaque Behavior Table .. 48
Activity ObjectFlow Table .. 49
Activity ControlFlow Table ... 49

4.7 State Behavior Table .. 51

iii

State Behavior ControlFlow Table .. 52
State ControlFlow Condition Table .. 53

5 Turbofan Engine Model .. 55
5.1 Introduction ... 55
5.2 Turbofan Model .. 55
5.3 Requirements .. 55
5.4 ValueType ... 56
5.5 Constraint Blocks .. 56
5.6 System Model ... 56
5.7 Results ... 56
5.8 References ... 57

6 UAV Model .. 59
6.1 Introduction .. 59
6.2 Analyze Stakeholder Needs ... 59
6.3 Mission Requirement ... 60
6.4 System Requirements .. 60

System Behavior ... 60
Weight Estimation ... 60
Wing Area Estimation .. 61

6.5 References ... 61
7 FMEA Template .. 63

7.1 Introduction ... 63
7.2 FMEA .. 63
7.3 Recommended Action .. 64
7.4 References ... 64

iv • Contents

Introduction
MapleMBSE Application Guide Overview
MapleMBSE™ gives an intuitive, spread-sheet based user interface for entering detailed
system design definitions, which include structures, behaviors, requirements, and parametric
constraints.

The Application directory of your MapleMBSE installation contains six applications. Each
of the chapters in this guide corresponds to one of the applications:

DescriptionApplication NameChapter
The first application uses the
TWCSysML-Structure.mse file to demonstrate
the use of blocks in MapleMBSE

Working With Blocks in MapleMBSE1

This model uses theTWCSysML-Model.mse
and TWCSysML-ModelActivity.mse files to

Creating a Model in MapleMBSE (Fitness
Tracker Model)

2

demonstrate how to create a model in
MapleMBSE which can be exported to the
Teamwork Cloud
The example in this chapter defines how to
create states, define their transitions and the

Working With State Machine Diagrams in
MapleMBSE

3

events that trigger these transitions using
MapleMBSE.
This chapter contains a model of Countdown
Timer that uses TWCSysML-Timer.mse to
create a simulatable Timer model.

Count Down Timer Model4

This example model is used to identify design
points of a turbofan engine. MapleMBSE and

Turbofan Engine Model5

Cameo SystemsModeler™were used to create
a turbofan example model
This model uses Object Oriented System
EngineeringMethodology (OOSEM) to design

UAV Model6

a conceptual model of an Unmanned Aerial
Vehicle (UAV).
This model is used to perform FMEA analysis
by accessing SysML model elements from the
Teamwork Cloud server.

FMEA Template7

Related Products
MapleMBSE 2019 requires the following products:

• Microsoft® Excel® 2010 Service Pack 2, Excel 2016 or Excel 2019.

v

• Oracle® Java® SE Runtime Environment 8.

Note:MapleMBSE looks for a Java Runtime Environment in the following order:

1) If you use the -vm option specified in OSGiBridge.init (not specified by default)

2) If your environment has a system JRE (meaning either: JREs specifed by the environment
variables JRE_HOME and JAVA_HOME in this order, or a JRE specified by the Windows
Registry (created by JRE installer)), MapleMBSE will use it.

3) The JRE installed in the MapleMBSE installation directory.

If you are using IBM® Rational® Rhapsody® with MapleMBSE, the following version is
supported: Rational Rhapsody Version 8.15

• Teamwork CloudTM server 18.5 SP3 or 19.0 SP2

• Note that the architecture of the supported non-server products (that is, 32-bit or 64-bit)
must match the architecture of your MapleMBSE architecture.

Related Resources
DescriptionResource

System requirements and installation instructions for
MapleMBSE. TheMapleMBSE Installation Guide is available
in the Install.html file located either on your MapleMBSE
installation DVD or the folder where you installed MapleMBSE.

MapleMBSE Installation
Guide

Instructions for using MapleMBSE software. TheMapleMBSE
User Guide is available in the folder where you installed
MapleMBSE.

MapleMBSE User Guide

MapleMBSEConfiguration
Guide

For additional resources, visit http://www.maplesoft.com/site_resources.

Getting Help

To request customer support or technical support, visit http://www.maplesoft.com/support.

Customer Feedback

Maplesoft welcomes your feedback. For comments related to the MapleMBSE product
documentation, contact doc@maplesoft.com.

Copyrights
• Microsoft, Windows, Windows Server, Excel, and Internet Explorer are registered
trademarks of Microsoft Corporation.

vi • Introduction

http://www.maplesoft.com/site_resources
http://www.maplesoft.com/support

• Teamwork Cloud, Cameo Systems Modeler, and MagicDraw are registered trademarks
of No Magic, Inc.

• Eclipse is a trademark of Eclipse Foundation, Inc.

• UML is a registered trademark or trademark of Object Management Group, Inc. in the
United States and/or other countries.

Introduction • vii

viii • Introduction

1 Blocks in MapleMBSE
1.1 Blocks Table
The block diagram shown below is created using MapleMBSE and syncing it to the Team-
work Cloud. This chapter will explain how to work with blocks in MapleMBSE.

This example is created with the following package structure:

Model

+ Structure

The list of features available in MapleMBSE to define blocks are:

• Association

• Aggregation

• Composition

• Generalization

• OwnedEnd Multiplicty

• Constraint

• Property

1

• Value

• Operations

• Redefine Value

The configuration file, TWCSysML-Structure.mse defines seven worksheet templates to
work with blocks:

• The BlocksTree and BlocksTreeDirect worksheets are used to create blocks and their
relationships.

• The BlockPropertiesworksheet is used to create generalizations, values and operations.

• The Redefines worksheet is used to specify values and redefine values to blocks.

• The ConstraintTable worksheet is used to create parameters, opaque expressions and
define constraint blocks.

• BlockConstraintTable is used to create a direct association between Blocks and Con-
straint Blocks.

• Parametric Table is used to create a binding connector between the constraint parameters.

Creating a Block

To create a block, enter a name for the block in the column C insertion area (the Block Top
Level column) as shown below. A block called Aeroplane is created.

To create a relation between blocks, they must first be created in the Block Top Level
column before they can be added in the second level.

Blocks can be created in all worksheets except for the ConstraintTable worksheet.

2 • 1 Blocks in MapleMBSE

1.2 Creating Association, Aggregation andComposition

To create relations without direction, use the BlocksTree worksheet. The blocks need to
be created as shown below.

To create Association relations:

1. Enter the block name in the Block Top Level column.

2. The row is highlighted as a duplicate key to indicate the block already exists. Enter the
related block name in the Block 2nd Level column, in the same row.

1.2 Creating Association, Aggregation and Composition • 3

3. MapleMBSE checks if the entry is valid by comparing it with existing blocks and will
add none in the Aggregation column by default.

To create Aggregation and Composition relations, follow the previous steps by entering the
owned end block (the class that has an association owned by another class) in column C,
replace none with composite in the Aggregation column to create a composition relation
and shared to create an aggregation relation.

1.3 Creating Direct Association, Aggregation and
Composition
Use the BlocksTreeDirect worksheet to create relations with direction. Both tables are
similar in defining relations, the type of relation differs based on the entry in theAggregation
column. Enter the class name in the Block Top Level column and enter the name of the
Attribute class in theBlock 2nd Level column and specify the aggregation type. The figure
below shows relations between blocks with navigability.

4 • 1 Blocks in MapleMBSE

The following table shows the necessary information needed to create a relation between
blocks and their corresponding worksheet. The Class and Attribute Class columns imply
that the class and its related class should be created first and then the respective aggregation
type.

To represent multiplicity, at the Association level, enter a value for the respective blocks
in theMultiplicity column as shown below.

1.3 Creating Direct Association, Aggregation and Composition • 5

1.4 Block Generalization, Values and Operation
To generalize a block, enter the name of the generalizing block in the Block Top Level
column of theBlockPropertiesworksheet and a corresponding value in theGeneralization
Block column.

Use the same worksheet to add a value property to a block. Enter the block name in the
Block Top Level column and then enter the value in the Value column.

Similarly, to add operations to the blocks, enter the block name in the Block Top Level
column and the operation name in the Operation column.

6 • 1 Blocks in MapleMBSE

In the Redefines worksheet, to enter a numerical value for Value Property use the Value
column, as shown below.

To redefine a property of an existing block, type a new value in the Value column along
with information about the block fromwhich the value is redefined. For example,Aeroplane
has value properties:Range, Vcruise, Vmax, wing span andWtotal. These properties are
not defined with numerical values, as shown above (these fields can hold numerical values).
TheBoeing 747 block is generalized toAeroplane. To redefine the values fromAeroplane
to Boeing 747, enter the same value for Boeing 747 properties as that of Aeroplane. In the
Value column, enter the desired values. Now to redefine, enter the block from which the
value is redefined and the name of the value being redefined as shown below.

1.4 Block Generalization, Values and Operation • 7

1.5 Constraint Blocks
The process for creating constraint blocks, relations and parameters is similar to that of
working with blocks in the previous section.

In the Constraint Block Top Level column, enter a constraint block and its breakdown in
theConstraint Block 2nd Level column. This creates a direct composition relation between
the blocks. In order to create different relations between the constraint blocks the configur-
ation file has to be edited. To create parameters, enter the respective block in theConstraint
Block Top Level column and the parameter name in the Constraint Parameters column.
To add an equation to a constraint block, enter the block name followed by the name of the
constraint in the Constraint Name column, as shown above. Enter the constraint block
name in theConstraint Block Top Level column and a name for the specification equation
in the Specification column. MapleMBSE accepts the entry. The corresponding field in the
Opaque Expression column is empty. Enter an expression, as shown in the figure.

To create a direct association between the blocks and Constraint Blocks select the Block-
ConstraintTable worksheet. Next, enter the block name in the Block Name column and
Constraint Block in the Constraint Block Name column, as shown below.

8 • 1 Blocks in MapleMBSE

To create a binding connector between the parameters of the Constraint Blocks, you must
first open the ParametricTable worksheet. Enter the Constraint Block and the parameter of
the constraint that has to be connected in the Constraint Parameter Column, followed by
the Constraint Block name and the target parameter in the respective column. MapleMBSE
will automatically create a binding connector between the two parameters of the constraint
blocks specified.

1.5 Constraint Blocks • 9

10 • 1 Blocks in MapleMBSE

2 The Fitness Tracker Model
The Excel Workbook template, TWCSysML-Model.xlsx, arranges the display of the ele-
ments in worksheets as defined in the configuration files.

The Package structure of the model is displayed in the Packages worksheet.

The Requirements packages are defined hierarchically; defining a top-level requirement,
decomposing the requirements into groups and finally stating the requirements.

Once the requirements are defined, actors and their interactions with the system are created
in the Actors and UseCases worksheets.

The BlockTree and BlockProperties worksheets are used to display information about the
system context, specifications and relations.

The BlockConnectorTable and BlockPropertyTable worksheets create connections
between block properties.

Once the structural aspects are defined, the system's behavior are defined by using the
TWCSysML-ModelActivity.mse configuration file.

This example was created with the following package structure:

Model

- Requirements

- Use Case

- Structure

- Behavior

2.1 Packages
The Packages worksheet is used to organize the model elements into respective Packages.
The user can create packages by specifying a name for the package under theName column
in the Packagesworksheet. Packages are created as shown in the figure below. The config-
uration (.mse) file is configured in such as way so that when a user begins working directly
in a worksheet, without creating any packages beforehand, the packages are automatically
created and elements are displayed under the packages corresponding to the worksheet.

11

2.2 Requirements Table
The requirements defined for a system are used to identify the behavior, constraints, system
specifications, etc. for which the system is modeled. Requirements can be categorized or
grouped based on their definition of the system such as: performance, functional, constraints,
etc.

This example was created with requirements in three levels, as shown in the Excel file below.
The number of levels and appearance of the Requirements worksheet is controlled by the
configuration (.mse) file and can be changed by editing the configuration file.

Creating Requirements

Requirements contain a unique ID,Name and Specification field to identify and name each
requirement with a brief description.

12 • 2 The Fitness Tracker Model

To enter a new requirement:

1. Enter an ID for a top level requirement in the ID column, as shown above. MapleMBSE
checks for duplicate entries and adds a row for the corresponding ID, enabling the user
to enter a name and specification for the requirement.

2. To create a second level requirement, use the same ID and name as for the top-level re-
quirement. MapleMBSE will detect it as a duplicate entry and highlight it as a duplicate
key. Type an ID for the requirement in the ID column, of the Requirement 2nd Level
section (column E), as shown above. MapleMBSE considers this to be a unique entry
and enables the corresponding row to accept a name and description for the requirement.

3. To create a third-level Requirement, follow step 2, then enter a new ID in column H.

Follow the above steps to create any number of requirements. Excel identifies the ID columns
as text format fields. The figure below shows the requirements created for the Fitness
Tracker model, using the steps above.

2.2 Requirements Table • 13

2.3 Use Case Table
The Use Case table describes the goals and interactions of the system model with external
users (stakeholders).

To create a use case table, the actors of the system are identified, then the goals of the system
and other functionality expected by the user.

14 • 2 The Fitness Tracker Model

Creating a Use Case Table

Use cases and actors are identified by unique names. The configuration file is created in
such a way that two different tables are needed to create the use case table. The Actors
worksheet is used to list the identified actors of the system. The UseCases worksheet is
then used to create the interaction between actors and use cases.

To create a Use Case table:

1. Create actors in the Actors worksheet as shown below.

2. In the UseCases worksheet, type the name of the actor to create a use case or select a
name from the list. Type the use case in the UseCase1 column as shown above.

3. To relate use cases, enter the actor name and corresponding use case in columns C and
D respectively. MapleMBSE will highlight this as a duplicate key. Enter the other use
case in theAssociated UseCase2 column (column E). This entry is considered valid and
rows are automatically created to show that the association is bidirectional.

The Use Case table created for the Fitness Tracker is shown below. The Associated
UseCase3 column is automatically generated by MapleMBSE based on the input in the
other columns. To associate use cases, they must already exist in the UseCase1 column.

2.3 Use Case Table • 15

2.4 Blocks Table
Blocks are created in a predefined package named, Structure. From the configuration file,
three worksheets are created:

• BlockTree to create blocks and parts,

• BlockProperties to create operations, generalizations and to create values for the blocks,
and

• BlockSatisfiesMatrix to validate the model against the requirements to identify if all
requirements have been met.

To make the example model simpler, only direct composition and generalization relations
between blocks are used.

Blocks Tree

Blocks are identified uniquely by their names and can be accessed between worksheets. To
identify the scope and working environment of the system, the mission context table is
created using the BlockTree and BlockProperties worksheets.

Once the system scope is defined, a blackbox specification for the system of interest is
created in terms of values and operations. These operations defined for the system are used
to work with the behavior of the system defined in a different configuration file.

On defining activities of the system using the behavior configuration file, logical blocks
are defined in the same table using BlocksTree. Finally, parts of the system are defined at

16 • 2 The Fitness Tracker Model

a physical level to meet the requirements specifications and also to satisfy the behavioral
aspect of the system modeled.

1. To create a block, enter a name for the block in the Block Top Level column (column
C), as shown below. Every unique entry in this column creates a block. Text entered is
case sensitive so to create properties for a block in the second level, the block name
should be accessed with the same case.

2.4 Blocks Table • 17

2. To create a direct compostion between blocks or to assign a block as part of another
block type, enter the name of the block for which a part has to be created in the Block
Top Level column followed by the part name inBlock 2nd Level, as shown above. Now
a direct association is created betweenMission Context and Activity Tracker.

3. Blocks can be created at a third level in two ways: similar to adding blocks at the second
level, specify the top level block, then the second level block, and finally the third level

18 • 2 The Fitness Tracker Model

block name. The figure below illustrates this way of adding a third level block. Since
Screen is already a part property ofActivity Tracker, physically adding a part to Screen,
as shown in row 9, will automatically create row 6 and vice versa.

To create generalizations, theBlockPropertiesworksheet is used. Similar to the above step,
once blocks are created in the top level column, enter the block name in Block Top Level
and the generalizing block in the Generalization Block column (cell D6). In the table,
Android and IOS are generalized to Smartphone.

To create the value and operation property of a block, in the BlockProperties worksheet
enter the name of the block that you want to assign a value. Since the block already exists,
the row is highlighted as a duplicate key. Type the value in the Value column (column E),

2.4 Blocks Table • 19

as shown below, to add a value to the block, Activity Tracker for this example. Notice
cells E6 to E12 have values assigned to Activity Tracker.

In a single row for the block, either value or operation can be assigned to it. To assign oper-
ation to a block, a similar procedure is followed. Enter the block to which an operation has
to be created in theBlock Top Level column and enter the operation name in theOperation
column (column F), as shown below.

20 • 2 The Fitness Tracker Model

Using the steps mentioned above, the Activity Tracker is created and the block table at
the physical level is shown while the rest of the inputs are filtered.

2.4 Blocks Table • 21

22 • 2 The Fitness Tracker Model

Block Satisfaction Matrix

The Block Satisfaction Matrix is used to verify whether the blocks created satisfy the re-
quirements. The matrix template is created automatically using the information from the
Blocks and Requirements worksheets.

To create a satisfy relation between the blocks and requirements, identify the block that
satisfies a requirement and in their intersection of row and column, enter 'x' to indicate that
the corresponding requirement has been met. This creates a satisfy relation between block
and requirement.

2.5 Internal Blocks Table
In the previous sections the system of interest has been defined with operations, values, and
by different parts of the system. In this section, we will define how these parts of the system
and its properties, will interact with each other.

To define ports through which the system interacts with other parts and subsystems, we
create ports to blocks and then represent how these ports are connected. As shown in the
diagram below, we can represent the interaction of block properties using ports and connect-
ors.

2.5 Internal Blocks Table • 23

Block Property Table

This worksheet displays the blocks and their part properties based on how they are defined
in previous worksheets. In addition to the part properties, you can create ports by using the
PortProperty column.

Creating an entry is similar to entries discussed in other sections:

1. Specify the block to which a port has to be created

2. In the PortProperty column, enter a name for the port.

In the example below for theActivity Tracker- Physical block, the PropertyName column
displays the existing part properties from previous worksheets. To create ports, enter the
block name in the Block Name column (column D) and the port name in the PortProperty
column (column G).

24 • 2 The Fitness Tracker Model

Block Connector Table

To create connectors between ports owned by the blocks and parts with ports, use the
BlockConnectorTableworksheet. In the example below, the first two columns,BlockName
and PortProperty, represent the owning block and the next two columns represent the
connecting block port information.

The next columns,BlockName andPartName, are used to specify the owner and connecting
parts.

To create the connection between ports, enter the top level block name and its port in the
first two columns, followed by details of the connecting block and port. MapleMBSE will
validate the input and create another row automatically to represent that the connection is
bidirectional.

The last two columns will be highlighted. as shown below.

To complete the connection, enter the block name and part name in their respective columns,
as shown below. The row that was automatically created by MapleMBSE does not require
any input and should be left blank.

2.5 Internal Blocks Table • 25

Property Connector Table

The Property Connector Table is used to connect part properties within the block, as
shown below.

To create a connector between Power Subsystem and Processor Subsystem, as shown
below, enter the block which owns the property in the first column. In this case, enter
Activity Tracker-Physical followed by the owning part name, Power Subsystem. In the
Property Connector section, enter the other property owner, which is again, the Activity
Tracker-Physical and the connecting part, Processor Subsystem. When the entry is valid,
MapleMBSE adds another row automatically to represent that the connection is bidirectional.

26 • 2 The Fitness Tracker Model

2.6 Activity Diagram
An Activity Diagram is used to define system behavior. The top level system functionality
is initially defined and these defined actions are further decomposed to show the logical
behavior of the system.

Only call behavior actions with pins are used in this model.

2.6 Activity Diagram • 27

Creating Actions for an Activity

Using the Use Case diagram, we have identified that the basic use case for the model is to
track daily activity.

The ActivityTable worksheet is used to create activities, action, control flow and object
flows. To create an activity diagram named, track daily activity, enter the name in the
ActivityName column, as shown below. Once we create the actions for the activity, we
need to now create flow between the actions. In this model, control flows are used only to
represent the start and end of an activity.

To create control flows to denote the start and end of the activity, use theControlFlowName
column. Following the creation of the control flows, object flows can be created in the same
worksheet.

Enter a name for the object flow in theObjectFlowName column. As shown in the diagram
below, control flows and object flows are created for the activity diagram, track daily
activity. Linking these flows with actions is discussed in the following section.

Creating Actions for an Activity

Using the Use Case diagram we have identified the basic use case for our model is to track
daily activity. The ActivitysTable worksheet is used to create activities, action, control
flow and object

flows. To
create an Activity Diagram, first create an activity and its elements in ActivityTable. Enter

28 • 2 The Fitness Tracker Model

the name of the activity in column D (ActivityName) as shown above. Once an activity is
created we can create its initial node, final node and its actions in the respective column as
shown. Use column H (Behavior) to allocate a behavior to the actions we created. In order
to allocate a behavior, it should exist as an activity in the ActivityName Column.

Creating Flows

Using the ObjectFlow and ControlFlow Table we can now complete the activity diagram.
To create an object flow between two actions in the ObjectFlow Table, Enter the activity
under which the action was created in ActivityTable under Column D and the action name
in Column E(Action Name Column) and the other action to be link with in Column G and
its activity in Column F. Now MapleMBSE will create the input and output pins for the re-
spective actions. In the case of Behavior being allocated to the action being links,
MapleMBSE will automatically create parameters.

2.6 Activity Diagram • 29

To create control flow between nodes we follow the same steps we used for creating object
flow, In ControlFlow Table, enter the activity name in Column C(ActivityName) and the
node in Column D(Activity Node) and the action node to be linked with in Column F and
its activity in Column E. Similarly we can link nodes and actions with Control or object
flows.

30 • 2 The Fitness Tracker Model

To create an object flow between parameter and an action we use the same method we used
for creating object flow between actions,MapleMBSEwill automatically identify the element
type and create the corresponding links.

Allocate Actions to Swim Lanes

2.6 Activity Diagram • 31

Before we can allocate actions to a swim lane. We first create swim lanes and assign a block
to the swim lane. BlocksTable tab displays the list of available blocks that can be assigned
to a swim lane. In SwimLanesTable tab ActivityName column displays the activities created
using previous tables. To create a swim lane enter a name in Column G (Swim Lane) and
the block it represents in Column H(Representing Block). Now we have created the swim
lanes with the respective blocks it represents. To allocate an action enter the name of the
activity in column F(Activity Name) and the swim lane name in column G. MapleMBSE
will highlight this record as duplicate field, enter the action to be allocated in column J and
the activity in column I to complete the allocation. MapleMBSE will now accept this as a
valid record and remove the error. Similar we can access different activities we created and
allocate the actions to swim lanes.

Activity Breakdown

To create an activity diagram for an action, use the ActivityBreakdown worksheet. An
action can be further decomposed to more detailed granularity by using the same approaches
discussed in previous sections.

32 • 2 The Fitness Tracker Model

To create an activity diagram for an action, enter the same name in the ActivityName
column, as shown below. This will create an activity diagram, track steps. Using the
ActivityTableworksheet, we can create flows and actions with the same approachmentioned
above.

2.6 Activity Diagram • 33

Creating Activity Parameters

When we create activity diagrams for the actions, consistency with the number of input pins
and output pins must be maintained. We create a parameter and specify the direction, as
shown below.

Enter a name in the ParameterName column and its Direction as either in or out. We
create the parameter to show that the track steps activity receives information that is pro-
cessed by actions within track steps and output is sent through a parameter called steps
out.

Parameter Flows

The ParameterFlowTableworksheet is similar to that of theObjectFlowTableworksheet.
The only difference is that we link object flows with an owned parameter of the activity
instead of action pins. Once the activity parameter is created using the Parameters work-
sheet, we create an object flow in the ActivityTable worksheet. The object flow created is
then linked with an action using the object flow table. In the parameter flow table, enter the
activity followed by the parameter, steps out, in theParameter Name column.MapleMBSE
will highlight the row. Enter the object flow name, display tsteps. At this point, we should
also specify that the parameter used, steps out, is an owned parameter for the activity, as
shown below.

34 • 2 The Fitness Tracker Model

3 State Machine Diagram
This section defines how to create states, define their transitions and the events that trigger
these transitions using MapleMBSE. The configuration file, TWCSysML-StateMa-
chines.MSE defines four worksheets that can be used to create states and define their
transitions. The TWCSysML-StateMachines.MSE file is located in the Application sub-
directory of your MapleMBSE installation directory. This example only covers the case
where a transition is triggered by a signal event. The following package structure is followed:

- Model

-Package

+StateMachine

+Region

+SignalEvent

35

3.1 How to Create a State Machine Diagram
In the StateMachinesworksheet enterPackage name as Package, and StateMachine name
as StateMachine. These naming conventions can be changed bymodifying the configuration
file.

Once the state machine is created, we have to define a region in which states will be created.
To create a region, use the Pseudo State Propertiesworksheet. Enter a name for the region,
as shown in the table below (Region1 is used as default as defined in configuration file).
This table is also used to create the pseudo state (PseudoState column) and final state (Fi-
nalState column) that defines the start and end of the state machine. Enter a name for the
states, as shown below. We define the transition from the pseudo state in this worksheet,
once we have created other states, and its transition in the Transition Matrix Table work-
sheet.

3.2 How to Create States and Transitions
To create a transition between states in the State Transition Table, enter the source state
in the SourceState column and the target in the TargetState column, as shown below.
Once we create these transitions between the states, we can edit the properties of these
transitions in TransitionProperties worksheet.

36 • 3 State Machine Diagram

3.3 How to Create Triggers with Signal Events
Initially, theTransition Name columnwill be displayed as a blank column since we haven’t
named the transitions. Enter a name for the transitions so they can be identified to create a
trigger and assign a signal event. Enter the Transition name in theTransition Name column
followed by the Signal Event name we created in StateMachine Table. MapleMBSE will
accept this as a valid input and automatically populate the other fields.

3.3 How to Create Triggers with Signal Events • 37

38 • 3 State Machine Diagram

4 Count Down Timer Model
The example is create with the following package structure

Model

-Requirements

-Use Case

-Timer

To create a Timer model we define the simplest requirements that is expected of the Timer.
The model is required to have functions that enable the user to start, reset, pause and stop
the timer. When Timer reaches zero, the user must be notified and the timer should continue
counting down. Keeping these as the only requirements, a Requirements table is initially
created. From these requirements we identify the actors and use cases. We create a Timer
block to define its behavior based on these identified Use Cases.

To define the Timer properties, we create operations and properties to the Timer block. To
enable the user to reset, stop, pause etc., we create these as signals so the user can command
the system when it is being executed. State Machine and Activities are used to define the
system behavior and its different states of operation.

TheRequirementsTree andUseCasesworksheets are used to define the requirements that
should be met by the model and its use cases. The CountDownTimer, SignalTable, and
TimeEventTableworksheets are used to create blocks and events that will trigger the system
to transition to a different state.

The TimerBehavior worksheet is used to create a StateMachine that will define the states
at which the system will exist and its behavior at different states. It is also used to create
operations and activities that will define system behavior. The StateMachineProperties
worksheet is used to create the states and the TransitionTable worksheet is used to define
their transition and events that triggered them.

ActivityNode Table andOpaqueBehavior Table is used to create activity nodes and behaviors.
ActivityObjectFlow table and ActivityControlTable is used to create flows between the
actions and nodes created in previous tables.

39

The StateBehaviorTable, StateBehaviorFlowTable and StateControlFlowCondtionTable
worksheets are similar to that of previously mentioned worksheets. The only difference
being that they are used to create activity flows that define states entry behavior.

4.1 Requirements Table
TheRequirements Tableworksheet is used to create Requirements. The configuration file
is defined in a way that this table can be use to create two levels of requirements. As shown
below, requirements for the system are created.

RequirementsSatisfy Table worksheet is used to create a Satisfy relation between the Re-
quirements, Blocks and its properties. This table will be used to verify if the requirements
are met once the system has been created.

4.2 UseCase Table
The Actors tab is used to identify the actors, while the UseCases tab is used to associate
these Actors with UseCases.

To create an association between Actor and UseCase, enter the Actor Name in the Actor
column, followed by the UseCase in UseCase1 column.

To create an association between UseCases, Enter theActor name inActor column followed
by the UseCase name in theUseCase1 column and associating UseCase in theAssociated-
UseCase2 column.

40 • 4 Count Down Timer Model

The UseCases table is created as shown below :

4.3 CountDownTimer Table
This table is used to create the Timer block, signals & events that will be used later in cre-
ating the model.

To create a block, enter the name in the Block Name column.

To create signals, enter a name for the signal in the Signals column, and its package name
in the PackageName column

4.3 CountDownTimer Table • 41

Note: Two kinds of events can be created in this worksheet, Signal events and Time events.
These events are created based on the signals that are being used.

Signal Table

The Signal table is an extension of the previous section. Here, we relate the signals that
were created with the SignalEvent. Later in the model, we will use these signal events as
triggers to define transition between states.

To assign a signal to SignalEvent, enter the SignalEvent name from the previous table and
its corresponding signal in the Signals column.

42 • 4 Count Down Timer Model

Time Event Table

The Time Event table is used to create the duration for the timed event.

Enter the event name in the Timed Event column, followed by a name for the duration in
the Expression Name column.

Next, enter the required time duration in the Duration column. Assign the duration to the
TimeEvent by entering the event and expression name in their respective columns.

4.3 CountDownTimer Table • 43

Now we have created the necessary Events and Signal that will be used to define the State
and Transition for the system.

4.4 Timer Behavior Table
Using the Timer Behavior table, we will define properties, operations and the behavior aspect
of the system using State Machines and Activities.

To create a property, enter the block in the Block Name column and its property in the
Block Property column.

Based on the use case, we will create the operations expected of the system: restart, count-
down and notify.

To create operations, enter a name for the operation and the block in the respective columns.

Next, we will create a StateMachine to define the system.

Enter the block name in the Block Name column and, in the same row, enter a name for
the StateMachine in the StateMachine column. This will create a StateMachine for the
Timer Block as shown below.

To make sure that the Timer Block exhibits the behavior of the StateMachine entered in the
previous step, enter the StateMachine in the Block StateMachine Behavior column. In
doing this, we are defining the state machine as a classified behavior.

Next, we create activities based on the operations created for the block.

44 • 4 Count Down Timer Model

Enter the block name in the Block Name column and the activity name in the Activities
column, we have now created activities for the block Timer. In the Block Operations Be-
havior column, enter the respective operations for the activities created.

4.5 StateMachine Properties Table
Next, we define the states and region for the TimerState we created previously.

Enter the StateMachine name followed by the region name in the Region column.

Create the Initial and Final states and the states at which the system will exist in respective
columns, as shown below.

4.5 StateMachine Properties Table • 45

Transition Table

To create a transition between states with triggers, enter a name for the transition in the
Transitions column (a row will be added with Source and Target state cells highlighted).

Enter the source state in the Source State column and the target state in the Target State
column to create a transition between them.

To add a trigger that starts the transition, enter the transition name and trigger name. The
source and target state fields will be updated automatically. To add an event to the trigger,
enter the event name in the appropropriate column. For example, to assign startEvent as a
trigger between the start and ready states, enter the transition name, then provide a name
for the trigger. Since startEvent is a signal event, it is populated in the Signal Event column,
as shown.

46 • 4 Count Down Timer Model

4.6 ActivityNodeTable
Next, we define the activity created in the TimerBehavior table,

To create actions and flow for an activity, enter the name of activity to which the above
mentioned elements will be created.

In the Call Behavior Actions column, enter a name to create call behavior actions.

Similarly, this table is used to create initial an final nodes, forks, opaque behaviors, decision
nodes, and send signal actions. Each of which can be created by providing a name for the
node and its activity.

4.6 ActivityNodeTable • 47

To assign the signal that will be send when a signal action is invoked, enter the name in the
Send Signal Action column and the signal that will be sent in the Signal column (signals
that were created in CountDownTimer table).

Opaque Behavior Table

This sheet is used to assign OpaqueBehavior to an action and define its parameter and
equation.

To assign OpaqueBehavior to an action, enter the Opaque Behavior created in previous
table in the Opaque Behavior column.

Note: The available actions will be automatically listed inOpaqueAction column, as shown
below.

48 • 4 Count Down Timer Model

To create an equation, enter it in the Opaque Equation column.

Tomanipulate the parameters and direction, we first need to create links between the actions.

Activity ObjectFlow Table

This table is used to create object flow between activities.

To create object flow between actions, enter the source action name in column E (Activity
Node column) and its activity in the ActivityName column followed by the target action
information in column G(ActivityNode column) and its activity in the Activity Name
column.

The object flows between the actions are created, as shown below.

Activity ControlFlow Table

The Activity Control Flow table works similar to the Object Flow table,

4.6 ActivityNodeTable • 49

Enter the source action and activity name in the first two columns, followed by the target
activity and action name.

Once we have completed the Behavior flow tables, we have to sync the input and output
flow of Opaque Behavior and its call action. To do this, go back to the Opaque Behavior
table.

The Input and Output pins will be displayed as argument and result by default. We change
this value based on the Opaque Equation parameter. Rename the argument in both tables
to time_in and time_out instead of result and argument for the Opq_behavior.

50 • 4 Count Down Timer Model

We have created state machines and activities to define the behavior of the system. As of
now StateMachine and the activities are defined as seperate behaviors of the same system.
In the following section, we will define how the system behaves at each state using the
activities we created.

4.7 State Behavior Table
The State Behavior table will list the states created in the StateMachine Properties work-
sheet.

Next, we will assign an entry behavior to the system.

In the example, we will create an entry behavior to the running state. Enter the state name
in the State Name column.

In the State Entry Behavior column, enter a name to create an entry behavior (decrease
in this example).

Next, we will define nodes and actions to the entry behavior, as shown below.

To assign a behavior to the call actions we created in an earlier section, enter the behavior
you want to assign in the Behavior column adjacent to the call actions.

4.7 State Behavior Table • 51

State Behavior ControlFlow Table

Creating behavior control flows is similar to creating activity control flows.

Enter the source action and activity in the first two columns and target action and activity
in the next column.

52 • 4 Count Down Timer Model

We have now created the control flows. When we defined a requirement initially, we stated
that the system should notify the user when time reaches zero and should continue counting
down even after reaching zero. To achive this, we will set a guard condition to the control
flow of the merge node created in earlier sections. In a previous section, we have already
create a notify behavior to the state and to send a signal to user.

State ControlFlow Condition Table

In theControlFlow Condition table, existing contol flows will be listed based on previous
inputs.

To create a guard condition, enter the state activity name in the State Activity column fol-
lowed by the source and target activity node information and enter a guard condition.

4.7 State Behavior Table • 53

54 • 4 Count Down Timer Model

5 Turbofan Engine Model
5.1 Introduction
This example model is used to identify design points of a turbofan engine. MapleMBSE
and Cameo Systems Modeler™ were used to create a turbofan example model. The design
point calculations are based on ideal gas turbine cycle analysis.
Initially, a mission statement is defined to specify the scope of the model and to identify
design points at Mach number 0.8 and operating altitude between 35000ft to 45000ft with
a bypass ratio between 6-8.

5.2 Turbofan Model

The turbofan system is defined as shown in the diagram above. The system consists of a
twin-spool configuration, with a high pressure turbine driving a high pressure compressor,
a low pressure turbine driving a low pressure compressor, and a fan. Temperature and
pressure are identified at the design points, as shown in the figure. The primary goal is to
identify the design points with optimum SFC (specific fuel consumption) value.

5.3 Requirements
Once the mission statement is defined, system requirements for the turbofan are also stated
for each subcomponent in terms of target efficiency, pressure ratio etc., which have to be
satisfied. The SystemRequirements worksheet in MapleMBSE is used to define the spe-
cifications and target values that have to be achieved. In addition to the system specifications,

55

analysis requirements are created to define the input values which will be used to analyze
the model.

To maintain traceability between system level requirements and mission level requirements,
theDeriveRequirementsworksheet in MapleMBSE is used to create derived relationships
between requirements.

5.4 ValueType
The ValueTypesTable and UnitQuantityKindTable worksheets are used to define units
and type of values that will be used to define the system. These valuetypes are used to specify
the type of value properties of the system to be modeled.

5.5 Constraint Blocks
Constraint blocks are created and constraints that will be used in the system are captured
using the ConstraintProperties worksheet. Similar to value types, these blocks are used
to specify the type the constraint property of the system that will be defined.

5.6 System Model
The Turbofan Blackbox is used to specify the properties of the turbofan in terms of values,
subcomponents and ports through with the system will interact.

Once the subcomponents are created we now define the values and constraint properties,
then type them to valuetypes and the constraint block created. A specific worksheet view
is created in MapleMBSE to show components values, constraints and their types.

An Analysis block is created to provide value exchange between the subcomponents. The
Analysis block provides the default values with which the analysis is performed and also
receives the results of analysis.

5.7 Results
The InstanceResults table is used to display the results of analysis performed in the model
using simulation toolkit in Cameo Systemsmodeller. InMapleMBSE the results are mapped
to Excel graph for visualization. This results worksheet is treated as read-only and used to
only visualize the results of analysis at different altitudes.

56 • 5 Turbofan Engine Model

To create a new instance:

1. Create a new instance specification by providing a name in the Instance Specification
column in InstanceTableworksheet and type “Analysis Block” as the name of the block
in the Instance of Block column.

2. Define the feature and corresponding value with which the new analysis has to be per-
formed, required input values to be created are ByPassRatioA and targetEfficiency_hp-
Turbine.

3. Once the analysis block is defined, specify the inlet properties by creating a new instance
for the InletConditions block, similar to the above method. The required values in this
case are Ta(inlet static temperature in K) and Pa (inlet static pressure in bar).

4. Commit the changes to Teamwork Cloud.

5. Open the model in Cameo or Magic Draw, then create a new block diagram in the
NewInstance package, drag and drop the analysis block instance.

6. Drop the inletConditions instance into the analysis instance to create a new feature instance
for the Analysis block.

7. Right-click the analysis instance and select simulate to run the analysis.

8. Export the results of analysis as new instance into the Result package under NewInstance
then commit to Teamwork Cloud.

9. Reload MapleMBSE to see the results in the NewInstanceResults worksheet.

To maintain the traceability between the requirements and the modeled system modeled,
useVerifyRequirementsMatrix to have a verify relationship between system requirements
and value properties of the block. By creating this verify relation, now we have traceability
from system values to system requirements and from system requirements to mission re-
quirements.

The RequirementsTraceability worksheet displays all the requirements from the model
and its relationships such as trace, verify, derived with other model elements.

5.8 References
1. Cohen, H. Rogers. G. and Saravanamuttoo, H. (1996). Gas turbine theory. Harlow:

Pearson education.

2. Sanford Friedenthal. (2015). A Practical Guide to SysML, 3rd Edition.MorganKaufmann
Publishers.

5.8 References • 57

58 • 5 Turbofan Engine Model

6 UAV Model
6.1 Introduction
This model uses the Object Oriented System Engineering Method (OOSEM) to design a
conceptual model of an Unmanned Aerial Vehicle (UAV). The primary use of UAV in
consideration is to assist forest fire fighting operations in remote areas. The sample model
shows a part of the OOSEM workflow to identify system requirements.

6.2 Analyze Stakeholder Needs
To identify the needs of stakeholders, in this case the fire department, the current operating
domain is modeled to find the existing limitations and expectations of the fire department.
The existing domain is captured using the block definition diagram represented in a table
format in the OperatingDomain worksheet. A causal analysis is performed to identify the
factors that are of interest to the fire department operation [6]. This causal analysis also re-
veals the present limitations in the fire department operation. At this stage, we have identified
the needs of stakeholder based on which we will derive the mission requirements.

59

6.3 Mission Requirement
To determine the scope and mission of the UAV model, we first identify the measure of
effectiveness based on the stakeholder needs analysis. Secondly, we define the operating
domain in which the system to be modeled will operate. The operating domain is represented
using a block diagram and shown in table format using the OperatingDomainUAV work-
sheet. We identify the use cases to determine the high level behavior of the system and its
interaction. Next, from the measure of effectiveness and the operating domain, we can define
the Mission Requirements and stakeholder requirements from the stakeholder needs that
we identified.

6.4 System Requirements
Before identifying the system requirements, we define units, and interfaces that will be used
by the system of interest. A separate package called Interface is create using the Interfa-
ceTable to contain the flows and signals that will be used in the model.

System Behavior

To find the system requirements, we initially define the UAV blackbox that displays: ports
through which the system interacts, its parts, and its values. In addition, we also define the
operations that are expected of the system, and the method to achieve it in terms of activities.
The UAVBlackBox worksheet displays the model elements mentioned above. Now we
define the system behavior and represent states at which the system will operate and its
events. On identifying the mission profile of UAV, we create detailed states at which the
system should operate. Following this, we use activities to define system behavior. Based
on the use cases, we create the activities since our mission is to control forest fires and we
are still in the conceptual phase. We define system behavior based on this activity.

Weight Estimation

Once we have defined the system behavior we need to determine the system specification
in order to create the system requirements. To identify the general design requirements the
weight of the UAV is first estimated followed by sizing and identifying critical parameters.
TheWeightEstimationTable worksheet displays the value properties and constraint prop-
erties need to estimate the weight of UAV. This worksheet also has tables created in excel
that displays specifications of similar aircraft and estimation constants from historical data
[1]. Based on the mission profile the parameter values can be altered based on payload,
range, endurance, etc. when satisfactory values are determined the values are updated to
WeightEstimationBlock and saved to the model in Teamwork Cloud.

60 • 6 UAV Model

Wing Area Estimation

To determine the sizing we initially create the constraints using theWingAreaConstraint
worksheet. Similar to the weight estimationworksheet, theWingAreaEstimationworksheet
is used to find wing area by iterating key parameters. Using the matching plot technique
[2] Wing loading vs Thrust loading is plotted from which we identify the wing area.
We have estimated the weight and wing area based on which other design parameters can
be further evaluated. This example model covers the conceptual phase from stakeholder
need analysis to identify system requirements.

6.5 References
1. Austin, R. (2010). Unmanned air vehicles: UAVS design, development, and deployment.

Chichester, West Sussex, and U.K.: Wiley.

2. Raymer, D. P. (1992). Aircraft design: A conceptual approach.Washington, D.C.: AIAA.

3. Sadraey, M. H. (2017). Unmanned aircraft design: A review of fundamentals. San Rafael,
CA: Morgan & Claypool.

4. Sadraey, M. H. (2013). Aircraft design: A systems engineering approach. Hoboken, NJ:
Wiley.

5. Simard, A. J., & Forster, R. B. (1972). A survey of air tankers and their use. Ottawa:
Forest Fire Research Institute.

6. Sanford Friedenthal. (2015). A Practical Guide to SysML, 3rd Edition.MorganKaufmann
Publishers.

7. GLOBAL HAWK SYSTEMS ENGINEERING CASE STUDY.pdf. (n.d.). Retrieved
from https://www.scribd.com/document/409826283/GLOBAL-HAWK-SYSTEMS-
ENGINEERING-CASE-STUDY-pdf

8. Firefighting Aircraft Recognition Guide - California - PDF Free Download. (n.d.). Re-
trieved from https://docobook.com/-firefighting-aircraft-recognition-guide-california.html

6.5 References • 61

62 • 6 UAV Model

7 FMEA Template
7.1 Introduction
This model is used to perform FMEA analysis by accessing SysML model elements from
Teamwork Cloud server. This example shows a FMEA process to identify possible failure
modes of system functions defined in conceptual design of a UAV; however this template
can be used to perform FMEA on different model elements by specifying appropriate path
and elements in the configuration file.

The FMEA process is performed as shown in the figure, system functions from the model
are accessed and failure modes are identified. Further we identify severity, occurrence and
detection for the failure modes and calculate the RPN (Risk Priority Number). Mitigating
actions for identified failures are created as new requirements. The complete process is
saved back to the teamwork cloud model.

7.2 FMEA
The FMEAMatrixworksheet is used to identify new failure modes for the system function
and to create a dependency (identifiedFM). Once we create new failure modes, we use the
FMEATable worksheet to provide a detailed analysis of the potential failure by specifying
S, O and D from which RPN is calculated.

63

7.3 Recommended Action
In this process, recommended actions are captured as requirements that can be saved back
to the model. TheRequirementFMEAMatrixworksheet is used to create a custom depend-
ency (deriveFMEA) between identified FMEA and recommended actions. The FMEARe-
quirementTable worksheet is used to add specification to the new requirements created as
a result of this analysis.

To use the custom FMEA template:

1. Add the TWCSysML.mdzip model to the teamwork cloud server.

2. In Cameo Systems Modeler or Magic Draw, Right-click CustomStereotypes profile→
Project Usage →Export Packages to New Server project.

3. In desired project File→ Project Usage→Server Project select the exported profile from
previous step.

4. Update path in the MSE file to get model elements.

7.4 References
1. Kratzke, R. (2018). Failure Modes Effects Analysis in MBSE. [ebook] Available at: ht-

tps://www.incose.org/docs/default-source/texas-gulf-coast/tgcc-conference-2018/2018-
papers/kratzke-2018-incose-presentation-(for-public-distribution).pdf?sfvrsn=db4796c6_2
[Accessed 22 May 2019].

2. Publishing, R. (2019). Failure Mode and Effect Analysis - FMEA - and Criticality Ana-
lysis - FMECA. [online] Weibull.com. Available at: https://www.weibull.com/ba-
sics/fmea.htm [Accessed 22 May 2019].

64 • 7 FMEA Template

	MapleMBSE Application Guide
	Contents
	Introduction
	1 Blocks in MapleMBSE
	1.1 Blocks Table
	Creating a Block

	1.2 Creating Association, Aggregation and Composition
	1.3 Creating Direct Association, Aggregation and Composition
	1.4 Block Generalization, Values and Operation
	1.5 Constraint Blocks

	2 The Fitness Tracker Model
	2.1 Packages
	2.2 Requirements Table
	Creating Requirements

	2.3 Use Case Table
	Creating a Use Case Table

	2.4 Blocks Table
	Blocks Tree
	Block Satisfaction Matrix

	2.5 Internal Blocks Table
	Block Property Table
	Block Connector Table
	Property Connector Table

	2.6 Activity Diagram
	Creating Actions for an Activity
	Creating Actions for an Activity
	Creating Flows
	Activity Breakdown
	Creating Activity Parameters
	Parameter Flows

	3 State Machine Diagram
	3.1 How to Create a State Machine Diagram
	3.2 How to Create States and Transitions
	3.3 How to Create Triggers with Signal Events

	4 Count Down Timer Model
	4.1 Requirements Table
	4.2 UseCase Table
	4.3 CountDownTimer Table
	Signal Table
	Time Event Table

	4.4 Timer Behavior Table
	4.5 StateMachine Properties Table
	Transition Table

	4.6 ActivityNodeTable
	Opaque Behavior Table
	Activity ObjectFlow Table
	Activity ControlFlow Table

	4.7 State Behavior Table
	State Behavior ControlFlow Table
	State ControlFlow Condition Table

	5 Turbofan Engine Model
	5.1 Introduction
	5.2 Turbofan Model
	5.3 Requirements
	5.4 ValueType
	5.5 Constraint Blocks
	5.6 System Model
	5.7 Results
	5.8 References

	6 UAV Model
	6.1 Introduction
	6.2 Analyze Stakeholder Needs
	6.3 Mission Requirement
	6.4 System Requirements
	System Behavior
	Weight Estimation
	Wing Area Estimation

	6.5 References

	7 FMEA Template
	7.1 Introduction
	7.2 FMEA
	7.3 Recommended Action
	7.4 References

