
> >

> >

> >

(5)(5)

> >

(1)(1)

(8)(8)

(3)(3)

> >

(6)(6)

> >

(7)(7)

> >

(2)(2)

> >

(4)(4)

> >

Programming Updates in Maple 2025

Assignment to a Vector
You can now make an assignment with a Vector on the left-hand side and a Vector of
the same size on the right-hand side. This is element-wise assignment.

<x,y,z>:=<2,5,3>:

x;

2

y;

5

z;

3

Sort
The sort command was overhauled in Maple 2025 adding a new general sorting
algorithm and introducing several new options. For full examples, see sort. Some of
the new features include the following:

Support indexed names using lexorder and lexorder[n] sorting methods. Previously
these would lead to errors.

sort([b,c,c[1],a,a[1],a[a],a[2],a[1,2]],'lexorder');

sort([[1, b[2], 1], [2,b,2], [3,b[1],3]], 'lexorder'[2]);

New ascending and descending options have been added:

sort([3,1,2],'ascending'=true);

sort([3,1,2],'ascending'=false);

sort([3,1,2],'descending'=true);

(12)(12)

(13)(13)

> >

> >

> >

(10)(10)

(8)(8)

(9)(9)

> >

> >

(11)(11)

> > sort([3,1,2],'descending'=false);

The new option, pass, allows pass-through of additional arguments to comparison
function.

This example uses the pass option to allow a third argument to the comparison
procedure. Here, the {0,undefined} set will be passed as the third argument in each call
to ecmp.

ecmp := proc(a,b,exclude)

 if a in exclude then

 false;

 elif b in exclude then

 true;

 else

 a <= b;

 end if;

end proc:

sort([3,undefined,1,0,2], ecmp, 'pass'={0,undefined});

Support was added to handle datatype-specific complex[8] and complex(sfloat) rtables
when using key sort.

Here the key function is applied first, computing the modulus of each element, then the
list is sorted by those values.

A := Array([1+I, .5+2*I, I-.9], datatype=complex[8]);

sort(A, 'key'=(x->abs(x)));

map(abs,A);

A new comparison algorithm, general, has been added that is especially useful when
comparing mixed types. The elements are sorted in the following way:

> >

(14)(14)

(17)(17)

> >

> >

> >

(8)(8)

(16)(16)

(15)(15)

> >

(18)(18)

(19)(19)

> >

numeric values are sorted in ascending numerical order

symbols and strings are sorted in lexorder (ASCII order)

indexed names and unevaluated functions are sorted first by the name part, then,
if both objects being compared have an index, then the index or argument
sequence

lists, sets, and rtables are compared element-wise as long as there are still
elements in the container. The shorter container is considered less-than if it
entirely matches the first n-elements of the other container. Multi-dimension
rtables are scanned in memory order, which is column-major by default.

specialized types are sorted by their id-classification, or objectid

sort([f(x,-3.1), f(x,2)]);

sort([f(x,-3.1), f(x,2)], 'general');

Both key=keyFunc and a comparison function are now allowed simultaneously in the
same call to sort.

Here the key function is applied first, computing the degree of each element, then the
list is sorted by those degrees.

sort([x^2,x,x^5],'numeric',key=(x->degree(x)));

sort([x^2,x,x^5],'numeric',key=degree,descending);

Basic support for sorting of quantities with mixed units was added.

sort([1*Unit(m),3*Unit(ft),30*Unit(cm)]);

We noticed that sort is often accidentally called with a set as an argument. Given that
sets are already in a fixed order that can not be changed, this could lead to surprises in
user code. As a result, when a non-default sort algorithm is specified, we now return a
sorted list instead of an unsorted set in this case, and introduced a new option,
kernelopts(sortsetoutput), to allow enabling of the previous behavior. For details see
Calling sort on a Set.

myset := {b[1],a[1],a};

(22)(22)

> >

> >

> >

> >

> >

> >

(8)(8)

> >

(23)(23)

> >

(20)(20)

(21)(21)

sort(myset);

sort(myset,'lexorder');

The efficiency of sort has been improved when using custom comparison functions. For
example, the following call is now twice as fast as Maple 2024.

N := 10^4:

data := LinearAlgebra:-RandomVector(N):

CodeTools:-Usage(sort(data,(a,b)->a>b)):

memory used=6.02MiB, alloc change=0 bytes, cpu time=63.00ms, real

time=62.00ms, gc time=0ns

In order to make the various options and capabilities of sort more clear, the
documentation has been updated and reorganized. Additionally the description of
sorting of algebraic objects like polynomials has been separated onto its own page,
independent of the topic of sorting of data inside lists and arrays.

LaTeX to MathML Converter
The new MathML:-FromLatex command converts a LaTeX expression to MathML, and
optionally further processes it into a Maple expression.

L := "\\cos (2\\theta) = \\cos^2 \\theta - \\sin^2 \\theta":

mml := MathML:-FromLatex(L);

mml := MathML:-FromLatex(L,output='maple');

(25)(25)

(27)(27)

> >

> >

(24)(24)

(8)(8)

> >

(26)(26)

> >

> >

(20)(20)

Deleting Entries in an Array
The ArrayTools:-Remove command has been updated to understand empty range
endpoints.

In Maple, you can use shorthand Array indexing syntax. For example, A[5..] means all
the entries starting with 5 and going to the end of the data. The ArrayTools:-Remove
command now supports this syntax.

A := Array(1..10,i->i);

ArrayTools:-Remove(A,5..);

Evaluation Rules for Sum
As of Maple 2025, the sum command has special evaluation rules. Thus, unevaluation
quotes are no longer necessary when summing over certain indexed expressions. For
example, previous versions of Maple required single quotes around v[k] in this example.
 This is no longer necessary.

v := Vector([1,2,3,4,5]);

sum(v[k],k=1..5);

15

> >

(27)(27)

(28)(28)

(8)(8)

> >

(20)(20)

Special Character Entity Names
The StringTools:-DecodeEntities command now understands a wider list of entity
names.

StringTools:-DecodeEntities("ϵ");

"e"

