
Programming Updates in Maple 2024

Series Conversion to Polynomial
By customer request, the series command now supports an option, oterm=false. This
option causes the series command to apply convert(s,polynom) before returning. The
returned expression is then a standard polynomial data structure with no order term,
rather than a specialized SERIES data structure. This is useful, for example, for plotting
the result.

•

S1 := series(exp(y),y=0,3,oterm=false);>

S1 d 1 C y C
1
2

 y2

plots:-implicitplot(x^2=S1, x=0..2, y=-2..2);>

x
0.8 1.0 1.2 1.4 1.6 1.8 2.0y

L2

L1

0

1

Mapping over Elements of an Array
The normal and expand commands now map over the elements of an array.•

A := Array([(x^2-1)/(x+1), (2*x^2+10*x+12)/(x+3)]);>

A d x2 L 1
x C 1

2 x2 C 10 x C 12
x C 3

normal(A);>

x L 1 2 x C 4

expand(A);>

x2

x C 1
L

1
x C 1

2 x2

x C 3
C

10 x
x C 3

C
12

x C 3

Normal(Vector([444*x])) mod 11;>

4 x

evalhf
A call to evalhf evaluates an expression to a numerical value using the floating-point
hardware of the underlying system. Maple includes evalhf for the purpose of gaining
speed in numerical computations when you know that infinite precision floating point
computations are not needed. When appropriate, you can use evalhf on expressions
that contain calls to your own custom procedures, and in Maple 2024, the scope has
been expanded to include procedures that employ try/catch statements.

•

p := proc(a, b)

 local r;

 try

if b = 0 then

error "test";

else

r := a/b;

end if;

 catch:

r := undefined;

 end try;

 return r;

end proc:

>

evalhf(p(1,0));>

Float undefined

Array Indexing Functions
An indexing function is a Maple procedure that can be applied to an array in order to
control how values are inserted and extracted from an array. Prior versions of Maple
required indexing functions to be assigned to a global name of the form
index/my_indexing_fn. Now they can be applied directly as a procedure using the shape
option.

•

weighted := proc(idx :: list, A::rtable, val::list);

 if nargs = 3 then

assign

A[op(idx)] := op(val);

 else

retrieve

local i := op(idx);

local ls := `if`(i=1,A[i],A[i-1]);

local rs := `if`(i=numelems(A),A[i],A[i+1]);

return (ls + 2*A[i] + rs)/4.;

 end if;

end proc:

>

> A := Array(1..10,i->i^2,shape=weighted);

 …

For this sample indexing function, the value retrieved is weighted by the surrounding
elements.

•

A[4];>

16.50000000

A[4] := 77;>

A4 d 77

A[4];>

47.00000000
See rtable_indexfcn for more details about the structure of an indexing function.•

The ArrayTools:-Alias command provides a way to create an array that points directly to
the storage of another array, providing a different view of the same data. This provides
an efficient way to reference a column or block of data without requiring a copy of the
original. Maple 2024 tightens up the rules for when the source or aliased array grows,
requiring allocation memory to hold the data.

•

In this example, the source and target arrays are both one-dimensional, and the alias
can be unambiguously updated to maintain the link to the parent.

•

source := LinearAlgebra:-RandomVector(4, datatype=float[8]):>

V := ArrayTools:-Alias(source):>

ArrayTools:-Extend(source, inplace, LinearAlgebra:-RandomVector(4,

datatype=float[8])):

>

source;>

L25.

40.

97.

43.

L7.

12.

L53.
«

V[1] := 1;>

V1 d 1

source[1];>

1.
In this example, the source matrix is two-dimensional, and growing will change the
order of the underlying data. Therefore, the alias must be invalidated.

•

source := LinearAlgebra:-RandomMatrix(2, datatype=float[8]):>

M := ArrayTools:-Alias(source):>

source(3,3) := 3;>

source d

L70. L58. 0.

13. L94. 0.
« « «

•

Growing an Aliased Array

M[1,1] := 1;>

Error, (in index/rtableAliasError) the parent rtable of this alias has

changed its root pointer, thus invalidating this rtable

In this example, the aliased matrix grows, and thus is disconnected from the original
parent. Both have independent data after the resize operation.

•

source := LinearAlgebra:-RandomMatrix(2, datatype=float[8]):>

M := ArrayTools:-Alias(source):>

M(3,3) := 3;>

M d

89. L67. 0.

L55. 77. 0.
« « «

M[1,1] := 1;>

M1, 1 d 1

source[1,1];>

89.

Element-wise Operations
Tilde (~) can be used after an operator or function name in order to have it applied
element-wise, that is, to the elements of a container rather than the container itself.
When using natural-math notation, it is not intuitive to use this mechanism for operators
like over-bar division, superscript exponentiation, and square roots. New in Maple 2024
is the elementwise function, which, when used, applies all of the operations in the given
expression in an element-wise manner. Non-elementwise operators and functions can
be used, and they are all interpreted as being element-wise. Specifically, +, -, *, ., /, ^,
abs, sqrt, log, ceil, floor, round, trunc, frac, and all the trig and log functions will be
applied element-wise.

•

For example:

A := [5,9]:>

B := [3,4]:>

C := [5,6]:>

G := [16,36]:>

elementwise(A*B/C^2*sqrt(G));>

12
5

, 6

• This command will raise an error:

`~`(A*B/C^2*sqrt(G));>

12
5

, 6

For more information, see operators/elementwise.•

Converting Logarithms to a Different Base
Maple prefers to deal with computations using natural logarithms, and therefore
automatically converts log[b](x) to ln(x)/ln(b). When dealing with step-by-step solutions
intended to be viewed by students this conversion is not always intuitive. A conversion
routine has been added to convert between log bases. Note the use of the % prefix
denotes InertForm, which stops evaluation avoiding automatic conversion back to ln.

•

ex1 := log[10](x);>

ex1 d
ln x

ln 10

convert(ex1, %log[10]);>

log10 x

convert(ln(x), %log[10]);>

log10 x
log10 e

convert(ln(x)/ln(10) - log[100](x), %log[10]);>

log10 x
2

Fenwick Tree
A Fenwick tree, or binary indexed tree, is a data structure for quickly computing sums of
values in an array that undergoes changes. It was proposed by Ryabko [1] and later
described by Fenwick [2].

•

Maple 2024 now supports this data structure. It is described on the FenwickTree help
page.

•

F := FenwickTree([seq(1 .. 100)]);>

F d ! a Fenwick tree with 100 entries O

RangeSum(F, 17, 83);>

3350

add(17 .. 83);>

3350

 The tilde function is a synonym for the elementwise function:

piecewise can now handle conditions involving objects:•

module my_object()

option object;

export Piecewise :: static;

export piecewise :: static := proc()

 return Piecewise(_passed);

end proc;

local ModulePrint :: static := proc(self, $)

 return 'my_object';

end proc;

end module:

>

piecewise(my_object < 0, 1, 0);>

Piecewise my_object ! 0, 1, 0

References
[1]: Boris Ryabko (1989). A fast on-line code. Soviet Math. Dokl. 39 (3): 533Q537.

[2]: Peter M. Fenwick (1994). A new data structure for cumulative frequency tables.
Software: Practice and Experience. 24 (3): 327Q336.

Objects

