
The Matroids and Hypergraphs Packages in Maple 
2024

Maple 2024 adds a new package for dealing with Matroids and a new package for dealing 
with Hypergraphs.

• 

Matroids
A matroid is an abstract mathematical object which encodes the notion of
independence. It has relevant applications in graph theory, linear algebra, geometry, 
topology, network theory, and more. Matroid theory is a thriving area of research.

• 

The simplest way to construct a matroid is via a matrix. Matroids constructed this way 
are called linear or representable.

• 

A := Matrix([[1,-1,0,1],[1,1,1,0],[1,1,0,1]]);> 

A d

1 L1 0 1

1 1 1 0
« « « «

with(Matroids);> 

AreIsomorphic, Bases, CharacteristicPolynomial, Circuits, Contraction, Deletion, DependentSets, Dual,

ExampleMatroids, Flats, GroundSet, Hyperplanes, IndependentSets, IsMinorOf, Matroid, Rank,

SetDisplayStyle, TuttePolynomial

M := Matroid(A);> 

M d

the linear matroid whose ground set is the set of column vectors of the matrix:

1 L1 0 1

1 1 1 0
« « « «

This matroid encodes the linear dependencies among the columns of A. The so-called
ground set of the matroid consists of the numbers 1 through 4, interpreted as column 
indices into A.

• 

We can ask for which subsets of columns are:• 

linearly independent, Q 

linearly dependent, and Q 

bases for the column space of A.Q 

IndependentSets(M);> 

:, 1 , 2 , 3 , 4 , 1, 2 , 1, 3 , 2, 3 , 1, 4 , 2, 4 , 3, 4 , 1, 2, 3 , 1, 2, 4 , 2, 3, 4



DependentSets(M);> 

1, 3, 4 , 1, 2, 3, 4

Bases(M);> 

1, 2, 3 , 1, 2, 4 , 2, 3, 4
These answers change if the column vectors are considered over a finite field, e.g. the 
field with two elements:

• 

Mmodular := Matroid(A,2);> 

Mmodular d

the linear matroid whose ground set is the set of column vectors of the matrix:

1 1 0 1

1 1 1 0
« « « «

mod 2

Bases(Mmodular);> 

1, 3 , 2, 3 , 1, 4 , 2, 4 , 3, 4
Notice that the size of a basis changed from 3 to 2. This number is the rank of the 
matroid, which agrees with the familiar notion of rank (of the column space).

• 

Rank(M);> 

3

Rank(Mmodular);> 

2
Matroids are much more general than this! As an abstraction of independence, matroids
also encode graph independence.

• 

Given a graph G, a subset of its edges are called dependent if they contain a path which
forms a closed loop, known as a circuit. 

• 

with(GraphTheory):> 

G := Graph({{a,b},{a,c},{b,d},{a,d}});> 

G d Graph 1: an undirected graph with 4 vertices and 4 edge(s)

GraphicMatroid := Matroid(G);> 

GraphicMatroid d

the graphic matroid on the graph:



Circuits(GraphicMatroid);> 

"a_b", "a_d", "b_d"
Inspired by linear algebra, one may take the definition of a basis as a maximal 
independent set. The bases of a graphic matroid are its spanning forests.

• 

Bases(GraphicMatroid);> 

"a_b", "a_c", "a_d" , "a_b", "a_c", "b_d" , "a_c", "a_d", "b_d"
In fact, every concept about linear independence coming from linear algebra (rank, 
bases, etc) can be axiomatized and interpreted for a graphic matroid.

• 

Conversely, the concept of a circuit from graph theory applies to linear matroids.• 

Rank(GraphicMatroid);> 

3

Circuits(M);> 

1, 3, 4

Circuits(Mmodular);> 

1, 2 , 1, 3, 4 , 2, 3, 4
This is the power of the abstraction of matroids. One rigorous definition of a matroid is 
as follows. 

• 

A matroid is a pair M = E, I , where • 

E is a finite set called the ground set and Q 

I is a collection of subsets of E called independent sets which satisfy the axioms:Q 

(Axiom 1) The empty set is an independent set.• 

(Axiom 2) Every subset of an independent set is independent.• 

(Axiom 3) If I1 and I2 are independent sets and I1 has more elements than I2, 
then there exists an element of I2 which when included in I1 results in an 
independent set.

• 

The matroid package includes functionality for constructing a matroid directly from its 
independent sets:

• 

AxiomaticMatroid := Matroid([1,2,3], independentsets = [{},{1},{2},

{3},{1,3},{2,3}]);

> 

AxiomaticMatroid d a matroid on 3 elements with 5 independent sets
In fact, for each of the matroid properties of independent sets, bases, dependent sets, 
and circuits we have seen, one may construct a matroid (provided they satisfy certain 
axioms, listed on the Matroid help page).

• 

Each property uniquely determines the rest, and the matroids package supports several 
other axiomatic constructions (via flats, hyperplanes, or a rank function).

• 

Algorithms which convert between these representations are called cryptomorphisms. 
The matroids package showcases fast implementations of these algorithms. 

• 



Circuits(AxiomaticMatroid);> 

1, 2

Bases(AxiomaticMatroid);> 

1, 3 , 2, 3
Beyond linear matroids constructed from a matrix, graphic matroids constructed from a 
graph, and general matroids constructed via axioms, the matroid package also features 
the construction of algebraic matroids, created from polynomial ideals.

• 

with(PolynomialIdeals):> 

AlgebraicMatroid := Matroid(<x+y+z^2,z^2+y>);> 

AlgebraicMatroid d
the algebraic matroid on the polynomial ideal:

z2 C y, z2 C x C y

DependentSets(AlgebraicMatroid);> 

1 , 1, 2 , 1, 3 , 2, 3 , 1, 2, 3

That 1  is a dependent set indicates that there exists a polynomial in the ideal which 
involves only the first variable, x.

• 

The matroids package features a gallery of well-known matroids, which can be made 
available by loading the ExampleMatroids subpackage. 

• 

with(ExampleMatroids);> 

Fano, Hesse, MacLane, NCubeMatroid, NonFano, NonPappus, Pappus, TicTacToe, UniformMatroid,
Vamos

Additionally, one may perform several operations on matroids:• 

AreIsomorphic: determine if two matroids are the same, under some relabeling of the 
ground set;

• 

Deletion and Contraction: generalizations of deletion and contraction of edges of a 
graph;

• 

Dual: a generalization of the dual of a planar graph. Unlike for graphs, duals of matroids
always exist. For linear matroids, duality corresponds to orthogonal complements of the 
row space.

• 

TuttePolynomial and CharacteristicPolynomial: polynomial invariants of matroids which 
generalize those of a graph;

• 

IsMinorOf: a test to check if one matroid can be obtained by another via a sequence of 
deletions and contractions.

• 

ContractionMatroid := Contraction(GraphicMatroid,{4});> 

ContractionMatroid d a matroid on 4 elements with 1 circuit

AreIsomorphic(ContractionMatroid,AxiomaticMatroid);> 

false



IsMinorOf(ContractionMatroid,GraphicMatroid);> 

true, :, :

Dual(M);> 

a matroid on 4 elements with 3 bases of size 1

Matroids:-TuttePolynomial(GraphicMatroid,x,y);> 

x3 C x2 C x y

Matroids:-CharacteristicPolynomial(GraphicMatroid,k);> 

k3 L 4 k2 C 5 k L 2

Hypergraphs
The Hypergraphs package is the computational backbone of the matroids package, and 
it is much more than that!

• 

A hypergraph is a pair V, E  consisting of a finite set V  called vertices and a collection 
E of subsets of V  called hyperedges.

• 

Hypergraphs, as indicated by the name, generalize graphs: a graph can be thought of as
a hypergraph where every hyperedge has size two (or size one if self-loops are allowed).

• 

We create a hypergraph with the Hypergraph command.• 

with(Hypergraphs);> 

AddHyperedges, AddVertices, AntiRank, AreEqual, AreIsomorphic, ComplementHypergraph,

DegreeProfile, Draw, DualHypergraph, ExampleHypergraphs, Hyperedges, Hypergraph, IsConnected,

IsEdge, IsLinear, IsRegular, IsUniform, LineGraph, Max, Min, NumberOfHyperedges,

NumberOfVertices, PartialHypergraph, Rank, SubHypergraph, Transversal,

VertexEdgeIncidenceGraph, Vertices

H := Hypergraph([1,2,3,4],[{1,2},{1,3},{2,3,4}]);> 

H d ! a hypergraph on 4 vertices with 3 hyperedges O
For few vertices and hyperedges, one can visualize a hypergraph as an augmented 
graph.

• 

Distinguished nodes of the graph correspond to vertices of the hypergraph. Pairs of 
nodes are connected, as usual, if they form a (hyper)edge.

• 

Additional, auxiliary nodes are included for every hyperedge of size greater than two 
and auxiliary edges connect such nodes with the vertices they include.

• 



• 

Draw(H);> 

1

2
3

4

Procedures for manipulating hypergraphs include AddHyperedges and AddVertices.• 

Given a hypergraph, the functions ComplementHypergraph, DualHypergraph, and
SubHypergraph create new hypergraphs in the ways the names suggest.

• 

Basic functionality such as Hyperedges, NumberOfHyperedges, Vertices, and
NumberOfVertices are available, as are simple queries including AreEqual, IsConnected,
and IsEdge.

• 

The functions DegreeProfile and VertexEdgeIncidenceGraph directly generalize those 
notions from graphs to hypergraphs.

• 

H2 := AddHyperedges(AddVertices(H,["apple"]),[{1,4},{2,"apple",3,4},

{3}]);

> 

H2 d ! a hypergraph on 5 vertices with 6 hyperedges O



Draw(H2);> 

1

2

3

4

apple

[AreEqual(H,H2), IsEdge(H2,{2,1}), NumberOfHyperedges(H2), 

Hypergraphs:-NumberOfVertices(H2), Hypergraphs:-IsConnected(H2), 

DegreeProfile(H)];

> 

false, true, 6, 5, true, 2, 2, 2, 1
The major advancement in Maple with the hypergraphs package has to do with what 
goes on behind the scenes.

• 

Subsets are carefully encoded using bit-vectors to make hefty calculations fast and 
feasible.

• 

with(ExampleHypergraphs);> 

Fan, Kuratowski, Lovasz, NonEmptyPowerSet, RandomHypergraph
Below, we illustrate the core hypergraph algorithms on a random hypergraph on 10 
vertices with 100 hyperedges.

• 

R := RandomHypergraph(10,100);> 

R d ! a hypergraph on 10 vertices with 100 hyperedges O



Draw(R);> 

1

2

3

4

5

6

7
8

9

10

The Min function computes the hyperedges which do not properly contain another 
hyperedge.

• 

The Max function computes those which are not properly contained in another 
hyperedge.

• 

The Transversal function computes the sets of vertices for which every hyperedge 
contains some element in that set.

• 

Hyperedges(Min(R));> 

6, 7, 9 , 2, 3, 10 , 7, 9, 10 , 1, 2, 4, 5 , 1, 4, 5, 7 , 1, 4, 6, 7 , 1, 3, 4, 8 , 1, 3, 7, 8 , 2, 3, 7, 8 , 1,

3, 4, 9 , 2, 4, 5, 9 , 2, 3, 6, 9 , 1, 3, 8, 9 , 3, 5, 8, 9 , 1, 2, 4, 10 , 1, 4, 5, 10 , 2, 4, 5, 10 , 1, 3, 6,

10 , 2, 5, 6, 10 , 1, 3, 7, 10 , 2, 4, 7, 10 , 1, 2, 8, 10 , 1, 3, 8, 10 , 3, 4, 8, 10 , 4, 6, 8, 10 , 6, 7,

8, 10 , 1, 4, 9, 10 , 1, 2, 3, 5, 7 , 1, 3, 5, 6, 7 , 2, 3, 5, 6, 7 , 3, 4, 5, 6, 7 , 1, 2, 3, 5, 8 , 2, 4, 6, 7,

8 , 1, 5, 6, 7, 8 , 3, 4, 5, 6, 9 , 2, 3, 5, 7, 9 , 3, 4, 7, 8, 9 , 1, 5, 6, 8, 10 , 1, 5, 6, 9, 10



Hyperedges(Max(R));> 

2, 4, 5, 10 , 1, 2, 4, 5, 6 , 1, 2, 3, 5, 7 , 2, 4, 5, 7, 9 , 1, 2, 6, 7, 9 , 1, 2, 4, 9, 10 , 1, 2, 5, 6, 7, 8 , 1,

2, 3, 4, 5, 9 , 2, 3, 5, 6, 7, 9 , 2, 3, 4, 5, 8, 9 , 1, 3, 4, 5, 6, 10 , 2, 3, 4, 6, 7, 10 , 1, 2, 5, 6, 7, 10 , 1,

4, 5, 6, 7, 10 , 1, 2, 4, 6, 8, 10 , 2, 3, 4, 7, 8, 10 , 1, 2, 5, 7, 8, 10 , 3, 4, 5, 7, 8, 10 , 2, 4, 6, 7, 8, 10 ,

1, 3, 5, 6, 9, 10 , 2, 3, 6, 7, 9, 10 , 2, 3, 6, 8, 9, 10 , 1, 5, 6, 8, 9, 10 , 1, 2, 3, 4, 6, 8, 9 , 1, 3, 5, 6, 7,

8, 9 , 3, 4, 5, 6, 7, 8, 9 , 1, 2, 3, 5, 6, 8, 10 , 1, 2, 3, 6, 7, 8, 10 , 1, 3, 4, 5, 7, 9, 10 , 3, 4, 5, 6, 8, 9,

10 , 1, 4, 5, 7, 8, 9, 10 , 2, 5, 6, 7, 8, 9, 10 , 1, 3, 4, 6, 7, 8, 9, 10

Hyperedges(Transversal(R));> 

3, 4, 6, 10 , 3, 5, 6, 10 , 2, 3, 7, 10 , 3, 4, 7, 10 , 3, 5, 7, 10 , 1, 7, 9, 10 , 1, 2, 3, 4, 7 , 1, 2, 4, 5,

7 , 1, 3, 4, 5, 7 , 2, 3, 4, 5, 7 , 1, 2, 3, 6, 7 , 1, 3, 4, 6, 7 , 2, 3, 4, 6, 7 , 1, 3, 5, 6, 7 , 1, 2, 3, 7, 8 ,

1, 2, 4, 7, 8 , 1, 2, 5, 7, 8 , 1, 3, 5, 7, 8 , 3, 4, 5, 7, 8 , 1, 2, 6, 7, 8 , 2, 4, 6, 7, 8 , 3, 4, 6, 7, 8 , 1,

2, 3, 6, 9 , 1, 2, 4, 6, 9 , 1, 3, 4, 6, 9 , 2, 3, 4, 6, 9 , 2, 3, 5, 6, 9 , 1, 2, 4, 7, 9 , 1, 2, 3, 8, 9 , 1, 2,

4, 8, 9 , 2, 3, 4, 8, 9 , 1, 2, 5, 8, 9 , 3, 4, 5, 8, 9 , 1, 2, 6, 8, 9 , 3, 4, 6, 8, 9 , 1, 2, 7, 8, 9 , 1, 2, 3,

6, 10 , 1, 2, 5, 7, 10 , 1, 5, 6, 7, 10 , 1, 2, 6, 8, 10 , 2, 4, 6, 8, 10 , 1, 5, 6, 8, 10 , 4, 5, 6, 8, 10 ,

2, 4, 7, 8, 10 , 4, 6, 7, 8, 10 , 1, 2, 3, 9, 10 , 1, 2, 4, 9, 10 , 1, 3, 4, 9, 10 , 1, 2, 5, 9, 10 , 3, 4, 5, 9,

10 , 1, 2, 6, 9, 10 , 1, 3, 6, 9, 10 , 2, 4, 7, 9, 10 , 4, 5, 7, 9, 10 , 1, 3, 8, 9, 10 , 3, 4, 8, 9, 10 , 1,

5, 8, 9, 10 , 4, 5, 8, 9, 10 , 1, 6, 8, 9, 10 , 5, 6, 8, 9, 10 , 2, 7, 8, 9, 10 , 4, 7, 8, 9, 10 , 5, 7, 8, 9,

10 , 2, 3, 5, 7, 8, 9 , 2, 5, 6, 7, 8, 9 , 1, 2, 4, 5, 6, 10

Put another way, consider the hypergraph Food whose vertices are ingredients in your 
kitchen, and whose hyperedges are recipes.

• 

Then Min Food  are those recipes which require a minimal set of ingredients (i.e. 
removing any ingredient prevents any recipe from being made).

• 

Max Food  are those recipes which maximally use ingredients (i.e. you cannot include 
an additional ingredient to make a bigger recipe).

• 

Transversal Food  are all sets of ingredients an adversary could steal from your fridge 
which would prevent you from making any recipe.

• 

In the context of matroids, the sets of subsets that can be used to define a matroid 
axiomatically are all hypergraphs, and they are stored as such if they are known for a 
given matroid. Several cryptomorphisms come directly from these hypergraph 
operations. For example, the Circuits of a matroid M  are just Min DependentSets M .

• 

Below, we illustrate the remaining functionality and invite you to check out the details 
on our help pages!

• 



• 

DrawGraph(Hypergraphs:-LineGraph(H));> 

3

514

[Rank(H),AntiRank(H)];> 

3, 2

[IsLinear(H),IsRegular(H),IsUniform(H)];> 

true, false, false

with(ExampleHypergraphs);> 

Fan, Kuratowski, Lovasz, NonEmptyPowerSet, RandomHypergraph

[Draw(Kuratowski({1,2,3,4,5},2)),Draw(Kuratowski({1,2,3,4},3))];> 

1
2

3

4

5

, 1

2

3
4



Draw(Lovasz(5));> 

NumberOfHyperedges(Lovasz(5));> 

206


