The Matroids and Hypergraphs Packages in Maple 2024

- Maple 2024 adds a new package for dealing with Matroids and a new package for dealing with Hypergraphs.

Matroids

- A matroid is an abstract mathematical object which encodes the notion of independence. It has relevant applications in graph theory, linear algebra, geometry, topology, network theory, and more. Matroid theory is a thriving area of research.
- The simplest way to construct a matroid is via a matrix. Matroids constructed this way are called linear or representable.
> A := Matrix([[1, -1, 0, 1], [1, 1, 1, 0], [1, 1, 0, 1]]);

$$
A:=\left[\begin{array}{cccc}
1 & -1 & 0 & 1 \\
1 & 1 & 1 & 0 \\
\vdots & \vdots & \vdots & \vdots
\end{array}\right]
$$

> with(Matroids);
[AreIsomorphic, Bases, CharacteristicPolynomial, Circuits, Contraction, Deletion, DependentSets, Dual, ExampleMatroids, Flats, GroundSet, Hyperplanes, IndependentSets, IsMinorOf, Matroid, Rank, SetDisplayStyle, TuttePolynomial]
> M := Matroid(A);
$M:=\left\langle\begin{array}{l}\text { the linear matroid whose ground set is the set of column vectors of the matrix: } \\ \qquad\left[\begin{array}{cccc}1 & -1 & 0 & 1 \\ 1 & 1 & 1 & 0 \\ \vdots & \vdots & \vdots & \vdots\end{array}\right]\end{array}\right.$

- This matroid encodes the linear dependencies among the columns of A. The so-called ground set of the matroid consists of the numbers 1 through 4, interpreted as column indices into A.
- We can ask for which subsets of columns are:
- linearly independent,
- linearly dependent, and
- bases for the column space of A.
> IndependentSets (M);
$[\varnothing,\{1\},\{2\},\{3\},\{4\},\{1,2\},\{1,3\},\{2,3\},\{1,4\},\{2,4\},\{3,4\},\{1,2,3\},\{1,2,4\},\{2,3,4\}]$
> DependentSets (M);

$$
[\{1,3,4\},\{1,2,3,4\}]
$$

> Bases (M);

$$
[\{1,2,3\},\{1,2,4\},\{2,3,4\}]
$$

- These answers change if the column vectors are considered over a finite field, e.g. the field with two elements:
> Mmodular $:=$ Matroid (A, 2);

$$
\text { Mmodular }:=\left\langle\begin{array}{c}
\text { the linear matroid whose ground set is the set of column vectors of the matrix: } \\
\qquad\left[\begin{array}{cccc}
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0 \\
\vdots & \vdots & \vdots & \vdots
\end{array}\right] \bmod 2
\end{array}\right)
$$

> Bases (Mmodular) ;

$$
[\{1,3\},\{2,3\},\{1,4\},\{2,4\},\{3,4\}]
$$

- Notice that the size of a basis changed from 3 to 2 . This number is the rank of the matroid, which agrees with the familiar notion of rank (of the column space).
$>\operatorname{Rank}(\mathrm{M}) ;$
3
> Rank(Mmodular);
2
- Matroids are much more general than this! As an abstraction of independence, matroids also encode graph independence.
- Given a graph G, a subset of its edges are called dependent if they contain a path which forms a closed loop, known as a circuit.
> with (GraphTheory):
$>G:=\operatorname{Graph}(\{\{a, b\},\{a, c\},\{b, d\},\{a, d\}\}) ;$
$G:=$ Graph 1: an undirected graph with 4 vertices and 4 edge(s)
> GraphicMatroid := Matroid(G);

> Circuits (GraphicMatroid);

$$
\text { [\{"a_b", "a_d", "b_d"\}] }
$$

- Inspired by linear algebra, one may take the definition of a basis as a maximal independent set. The bases of a graphic matroid are its spanning forests.
> Bases (GraphicMatroid) ;

$$
\text { [\{"a_b", "a_c", "a_d"\}, \{"a_b", "a_c", "b_d"\}, \{"a_c", "a_d", "b_d"\}] }
$$

- In fact, every concept about linear independence coming from linear algebra (rank, bases, etc) can be axiomatized and interpreted for a graphic matroid.
- Conversely, the concept of a circuit from graph theory applies to linear matroids.
> Rank(GraphicMatroid);
> Circuits(M);

$$
[\{1,3,4\}]
$$

> Circuits(Mmodular);

$$
[\{1,2\},\{1,3,4\},\{2,3,4\}]
$$

- This is the power of the abstraction of matroids. One rigorous definition of a matroid is as follows.
- A matroid is a pair $M=(E, I)$, where
- E is a finite set called the ground set and
- I is a collection of subsets of E called independent sets which satisfy the axioms:
- (Axiom 1) The empty set is an independent set.
- (Axiom 2) Every subset of an independent set is independent.
- (Axiom 3) If $I l$ and $I 2$ are independent sets and $I l$ has more elements than $I 2$, then there exists an element of $I 2$ which when included in $I 1$ results in an independent set.
- The matroid package includes functionality for constructing a matroid directly from its independent sets:

```
> AxiomaticMatroid := Matroid([1,2,3], independentsets = [{},{1},{2},
```

$\{3\},\{1,3\},\{2,3\}]) ;$

AxiomaticMatroid $:=\langle$ matroid on 3 elements with 5 independent sets〉

- In fact, for each of the matroid properties of independent sets, bases, dependent sets, and circuits we have seen, one may construct a matroid (provided they satisfy certain axioms, listed on the Matroid help page).
- Each property uniquely determines the rest, and the matroids package supports several other axiomatic constructions (via flats, hyperplanes, or a rank function).
- Algorithms which convert between these representations are called cryptomorphisms. The matroids package showcases fast implementations of these algorithms.
> Circuits (AxiomaticMatroid);

$$
[\{1,2\}]
$$

> Bases (AxiomaticMatroid);

$$
[\{1,3\},\{2,3\}]
$$

- Beyond linear matroids constructed from a matrix, graphic matroids constructed from a graph, and general matroids constructed via axioms, the matroid package also features the construction of algebraic matroids, created from polynomial ideals.
> with (PolynomialIdeals):
> AlgebraicMatroid $:=$ Matroid (<x+y+z^2, $\left.z^{\wedge} 2+y>\right)$;

$$
\text { AlgebraicMatroid }:=\left\langle\begin{array}{c}
\text { the algebraic matroid on the polynomial ideal: } \\
\left\langle z^{2}+y, z^{2}+x+y\right\rangle
\end{array}\right\rangle
$$

> DependentSets (AlgebraicMatroid);

$$
[\{1\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}]
$$

- That $\{1\}$ is a dependent set indicates that there exists a polynomial in the ideal which involves only the first variable, x.
- The matroids package features a gallery of well-known matroids, which can be made available by loading the ExampleMatroids subpackage.
> with(ExampleMatroids);
[Fano, Hesse, MacLane, NCubeMatroid, NonFano, NonPappus, Pappus, TicTacToe, UniformMatroid, Vamos]
- Additionally, one may perform several operations on matroids:
- Arelsomorphic: determine if two matroids are the same, under some relabeling of the ground set;
- Deletion and Contraction: generalizations of deletion and contraction of edges of a graph;
- Dual: a generalization of the dual of a planar graph. Unlike for graphs, duals of matroids always exist. For linear matroids, duality corresponds to orthogonal complements of the row space.
- TuttePolynomial and CharacteristicPolynomial: polynomial invariants of matroids which generalize those of a graph;
- IsMinorOf: a test to check if one matroid can be obtained by another via a sequence of deletions and contractions.

```
> ContractionMatroid := Contraction(GraphicMatroid, {4});
```

ContractionMatroid $:=\langle$ a matroid on 4 elements with 1 circuit \rangle
> AreIsomorphic(ContractionMatroid, AxiomaticMatroid);
false
> IsMinorOf(ContractionMatroid, GraphicMatroid);

$$
\text { true, } \varnothing, \varnothing
$$

> Dual (M);
\langle a matroid on 4 elements with 3 bases of size 1\rangle
> Matroids:-TuttePolynomial (GraphicMatroid, x,y);

$$
x^{3}+x^{2}+x y
$$

> Matroids:-CharacteristicPolynomial(GraphicMatroid,k);

$$
k^{3}-4 k^{2}+5 k-2
$$

Hypergraphs

- The Hypergraphs package is the computational backbone of the matroids package, and it is much more than that!
- A hypergraph is a pair (V, E) consisting of a finite set V called vertices and a collection E of subsets of V called hyperedges.
- Hypergraphs, as indicated by the name, generalize graphs: a graph can be thought of as a hypergraph where every hyperedge has size two (or size one if self-loops are allowed).
- We create a hypergraph with the Hypergraph command.
> with (Hypergraphs);
[AddHyperedges, AddVertices, AntiRank, AreEqual, AreIsomorphic, ComplementHypergraph,
DegreeProfile, Draw, DualHypergraph, ExampleHypergraphs, Hyperedges, Hypergraph, IsConnected,
IsEdge, IsLinear, IsRegular, IsUniform, LineGraph, Max, Min, NumberOfHyperedges,
NumberOfVertices, PartialHypergraph, Rank, SubHypergraph, Transversal,
VertexEdgeIncidenceGraph, Vertices]
> H := Hypergraph ([1, 2, 3, 4], [\{1, 2\}, $\{1,3\},\{2,3,4\}])$;
$H:=<a$ hypergraph on 4 vertices with 3 hyperedges $>$
- For few vertices and hyperedges, one can visualize a hypergraph as an augmented graph.
- Distinguished nodes of the graph correspond to vertices of the hypergraph. Pairs of nodes are connected, as usual, if they form a (hyper)edge.
- Additional, auxiliary nodes are included for every hyperedge of size greater than two and auxiliary edges connect such nodes with the vertices they include.
$>$ Draw (H);

- Procedures for manipulating hypergraphs include AddHyperedges and AddVertices.
- Given a hypergraph, the functions ComplementHypergraph, DualHypergraph, and SubHypergraph create new hypergraphs in the ways the names suggest.
- Basic functionality such as Hyperedges, NumberOfHyperedges, Vertices, and NumberOfVertices are available, as are simple queries including AreEqual, IsConnected, and IsEdge.
- The functions DegreeProfile and VertexEdgelncidenceGraph directly generalize those notions from graphs to hypergraphs.
> H2 := AddHyperedges (AddVertices(H,["apple"]), [\{1,4\},\{2,"apple", 3, 4\}, \{3\}]);

$$
H 2:=<a \text { hypergraph on } 5 \text { vertices with } 6 \text { hyperedges }>
$$

> [AreEqual (H, H2), IsEdge (H2, \{2, 1\}), NumberOfHyperedges (H2), Hypergraphs:-NumberOfVertices (H2), Hypergraphs:-IsConnected (H2), DegreeProfile(H)];
[false, true, 6, 5, true, [2, 2, 2, 1]]

- The major advancement in Maple with the hypergraphs package has to do with what goes on behind the scenes.
- Subsets are carefully encoded using bit-vectors to make hefty calculations fast and feasible.
> with (ExampleHypergraphs);
[Fan, Kuratowski, Lovasz, NonEmptyPowerSet, RandomHypergraph]
- Below, we illustrate the core hypergraph algorithms on a random hypergraph on 10 vertices with 100 hyperedges.
$>R:=$ RandomHypergraph $(10,100)$;

$$
R:=<\text { a hypergraph on } 10 \text { vertices with } 100 \text { hyperedges }>
$$

```
> Draw(R);
```


- The Min function computes the hyperedges which do not properly contain another hyperedge.
- The Max function computes those which are not properly contained in another hyperedge.
- The Transversal function computes the sets of vertices for which every hyperedge contains some element in that set.
> Hyperedges (Mi n(R));
$[\{6,7,9\},\{2,3,10\},\{7,9,10\},\{1,2,4,5\},\{1,4,5,7\},\{1,4,6,7\},\{1,3,4,8\},\{1,3,7,8\},\{2,3,7,8\},\{1$, $3,4,9\},\{2,4,5,9\},\{2,3,6,9\},\{1,3,8,9\},\{3,5,8,9\},\{1,2,4,10\},\{1,4,5,10\},\{2,4,5,10\},\{1,3,6$, $10\},\{2,5,6,10\},\{1,3,7,10\},\{2,4,7,10\},\{1,2,8,10\},\{1,3,8,10\},\{3,4,8,10\},\{4,6,8,10\},\{6,7$, $8,10\},\{1,4,9,10\},\{1,2,3,5,7\},\{1,3,5,6,7\},\{2,3,5,6,7\},\{3,4,5,6,7\},\{1,2,3,5,8\},\{2,4,6,7$, $8\},\{1,5,6,7,8\},\{3,4,5,6,9\},\{2,3,5,7,9\},\{3,4,7,8,9\},\{1,5,6,8,10\},\{1,5,6,9,10\}]$

> Hyperedges (Max(R));

$[\{2,4,5,10\},\{1,2,4,5,6\},\{1,2,3,5,7\},\{2,4,5,7,9\},\{1,2,6,7,9\},\{1,2,4,9,10\},\{1,2,5,6,7,8\},\{1$, $2,3,4,5,9\},\{2,3,5,6,7,9\},\{2,3,4,5,8,9\},\{1,3,4,5,6,10\},\{2,3,4,6,7,10\},\{1,2,5,6,7,10\},\{1$, $4,5,6,7,10\},\{1,2,4,6,8,10\},\{2,3,4,7,8,10\},\{1,2,5,7,8,10\},\{3,4,5,7,8,10\},\{2,4,6,7,8,10\}$, $\{1,3,5,6,9,10\},\{2,3,6,7,9,10\},\{2,3,6,8,9,10\},\{1,5,6,8,9,10\},\{1,2,3,4,6,8,9\},\{1,3,5,6,7$, $8,9\},\{3,4,5,6,7,8,9\},\{1,2,3,5,6,8,10\},\{1,2,3,6,7,8,10\},\{1,3,4,5,7,9,10\},\{3,4,5,6,8,9$, $10\},\{1,4,5,7,8,9,10\},\{2,5,6,7,8,9,10\},\{1,3,4,6,7,8,9,10\}]$
> Hyperedges(Transversal(R));
$[\{3,4,6,10\},\{3,5,6,10\},\{2,3,7,10\},\{3,4,7,10\},\{3,5,7,10\},\{1,7,9,10\},\{1,2,3,4,7\},\{1,2,4,5$,
$7\},\{1,3,4,5,7\},\{2,3,4,5,7\},\{1,2,3,6,7\},\{1,3,4,6,7\},\{2,3,4,6,7\},\{1,3,5,6,7\},\{1,2,3,7,8\}$, $\{1,2,4,7,8\},\{1,2,5,7,8\},\{1,3,5,7,8\},\{3,4,5,7,8\},\{1,2,6,7,8\},\{2,4,6,7,8\},\{3,4,6,7,8\},\{1$, $2,3,6,9\},\{1,2,4,6,9\},\{1,3,4,6,9\},\{2,3,4,6,9\},\{2,3,5,6,9\},\{1,2,4,7,9\},\{1,2,3,8,9\},\{1,2$, $4,8,9\},\{2,3,4,8,9\},\{1,2,5,8,9\},\{3,4,5,8,9\},\{1,2,6,8,9\},\{3,4,6,8,9\},\{1,2,7,8,9\},\{1,2,3$, $6,10\},\{1,2,5,7,10\},\{1,5,6,7,10\},\{1,2,6,8,10\},\{2,4,6,8,10\},\{1,5,6,8,10\},\{4,5,6,8,10\}$, $\{2,4,7,8,10\},\{4,6,7,8,10\},\{1,2,3,9,10\},\{1,2,4,9,10\},\{1,3,4,9,10\},\{1,2,5,9,10\},\{3,4,5,9$, $10\},\{1,2,6,9,10\},\{1,3,6,9,10\},\{2,4,7,9,10\},\{4,5,7,9,10\},\{1,3,8,9,10\},\{3,4,8,9,10\},\{1$, $5,8,9,10\},\{4,5,8,9,10\},\{1,6,8,9,10\},\{5,6,8,9,10\},\{2,7,8,9,10\},\{4,7,8,9,10\},\{5,7,8,9$, $10\},\{2,3,5,7,8,9\},\{2,5,6,7,8,9\},\{1,2,4,5,6,10\}]$

- Put another way, consider the hypergraph Food whose vertices are ingredients in your kitchen, and whose hyperedges are recipes.
- Then $\operatorname{Min}(F o o d)$ are those recipes which require a minimal set of ingredients (i.e. removing any ingredient prevents any recipe from being made).
- $\operatorname{Max}(F o o d)$ are those recipes which maximally use ingredients (i.e. you cannot include an additional ingredient to make a bigger recipe).
- Transversal(Food) are all sets of ingredients an adversary could steal from your fridge which would prevent you from making any recipe.
- In the context of matroids, the sets of subsets that can be used to define a matroid axiomatically are all hypergraphs, and they are stored as such if they are known for a given matroid. Several cryptomorphisms come directly from these hypergraph operations. For example, the Circuits of a matroid M are just $\operatorname{Min}(\operatorname{DependentSets}(M)$).
- Below, we illustrate the remaining functionality and invite you to check out the details on our help pages!
> DrawGraph (Hypergraphs:-LineGraph(H));

> [Rank (H), AntiRank (H)];
[3, 2]
> [IsLinear(H), IsRegular(H),IsUniform (H)];
[true,false, false]
> with(ExampleHypergraphs);
[Fan, Kuratowski, Lovasz, NonEmptyPowerSet, RandomHypergraph]
> [Draw(Kuratowski(\{1, 2, 3, 4,5\},2)), Draw(Kuratowski(\{1,2,3,4\},3))];


```
> Draw(Lovasz(5));
```


> NumberOfHyperedges (Lovasz (5));

