
Physics
Maple provides a state-of-the-art environment for algebraic computations in Physics, with 
emphasis on ensuring that the computational experience is as natural as possible. The 
theme of the Physics project for Maple 2021 has been the consolidation of the functionality
introduced in previous releases, together with significant enhancements in the areas of
Particle Physics, Quantum Mechanics, Tensor computations and General Relativity.

As part of its commitment to providing the best possible computational environment in 
Physics, Maplesoft launched a Maple Physics: Research and Development website in 2014,
which enabled users to download research versions of the package, ask questions, and 
provide feedback. The results from this accelerated exchange have been incorporated into
the Physics package in Maple 2021. The presentation below illustrates both the novelties 
and the kind of mathematical formulations that can now be performed.
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Feynman Diagrams and Feynman Integrals
Feynman Diagrams are the cornerstone of calculations in particle physics (collisions 
involving from the proton to the Higgs boson), for example at the CERN. As an introduction
for people not working in the area, see "Why Feynman Diagrams are so important". In 
connection, Maple 2020 presented a full rewriting of the FeynmanDiagrams command 
including a myriad of new capabilities. 

In Maple 2021, in addition, we implemented:

New options in the FeynmanDiagrams command, to handle the typical situation where 
one wants to study scattering amplitudes using different gauge choices for the fields' 
propagators; or a generic form of a propagator, useful to perform the computation with 
models that require a non-standard form for them; or request that the propagators 
used are displayed on the screen above the returned result; or computing the 
amplitudes without external legs normalization factors.

A new FeynmanIntegral module to evaluate the Feynman integrals that appear in the 
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output of the FeynmanDiagrams command, including package's commands for the 
basic steps involved, that is: to Parametrize or to Evaluate in one go, with different 
options, all the Feynman integrals found in an expression typically returned by
FeynmanDiagrams.

Examples - new FeynmanDiagrams options

New: you can set a vector and and a mixed spacetime-spinor field (i.e. 3/2 spinor). In this 
example, indicate also that A  is massless

_______________________________________________________

Now write down a minimal interaction Lagrangian, similar but different from QED, for 
testing purposes

Compute the amplitude for a process where there are 1 incoming and 1 outgoing particles 
of the same Q kind; this is the self-energy diagram:
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In this result, there are two things that are new in FeynmanDiagrams:

a) it can now handle 3/2 spinor fields, with 1 spacetime and 1 spinor indices;

b) it is now setting the gauge for the massless field  in a way that can be changed. 

To see all that, we implemented a new userinfo message, so that one can see, exactly, the
form of the propagator being used. Set the corresponding infolevel as follows and run the 
computation again (skip producing the diagram's drawing)
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In the user-information presented above in black, we see the form used for the propagator
 of the 3/2 spin  field, and  for the 

 field including the gauge used for it. For that, FeynmanDiagrams is now using a gauge 

term of the form  where A is set to 1, 0,  or to  itself,  respectively for 
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the Feynman, Landau unitary and arbitrary gauges. By default the Feynman and unitary 
gauges are respectively used for massless and massive fields. For example, to run the 
same computation using the Landau gauge, you can use the new propagatorgauge option:
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In the user-information presented above you see the different form used for the 
propagator .

The arbitrary value of propagatorgauge option makes the value of A remain unset, so that

you can set the gauge afterwards, possibly differently for each field, depending on 
convenience
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Note in the result above the occurrence of gauge fixing terms  and Q for each of the 

fields. These are implemented as  where  is any of  or . 
For example, you can now substitute each of them according to convenience, e.g. set the 
Feynman gauge for the massless field  and the Landau gauge for the  field

An extra level of flexibility is given by the new option usepropagators which, when set to 
false, makes FeynmanDiagrams return the abstract form  

instead of any specific form for the propagator

In this result, is implemented as a new FeynmanDiagrams:-Propagator 
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function; there are two occurrences

Finally, the convention is to add a normalization factor for each external leg (incoming or 
outgoing particle). That external normalization depends on the spin of the field [3]. For 

example, in the result (7) above, that is the origin of the factor  in the denominator. In
some contexts, however, it is usual or convenient to compute without these normalization 
factors. For that purpose you can use the new option,  

Examples - new FeynmanIntegral module

_______________________________________________________

Let L be the interaction Lagrangian

A process with one incoming and one outgoing particle a 1-loop
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Load the package

Parametrize the Feynman integral (12) using Feynman parameters

The Evaluate command is used to evaluate Feynman integrals. In the following input, we 
request for the momentum integration to not be performed, receiving, basically, the result 
above but with the integrations over the Feynman parameters swapped with the one over 
momentum



(17)(17)

> > 

> > 

(16)(16)

(3)(3)

(15)(15)

(2)(2)

> > 

(18)(18)

(12)(12)

> > 

(5)(5)

By default, however, Evaluate will perform the momentum integration  but in in 

 dimensions, so that its divergences get expressed as poles of Gamma functions, 
and also the Feynman parameters integration, returning a result in terms of the 
dimensional parameter  

1

The dimensional parameter is represented by FeynmanIntegral:-varepsilon and, because 
the FeynmanIntegral package is loaded, you can refer to it directly as varepsilon. To 
compute this integral expanding the dimensional parameter, keeping terms up to , 
and not integrating over the Feynman parameters, use

1

The same integral can be computed using alpha parameters
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The Parametrize also work using the -parameters
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Simplification of products of Dirac matrices
The simplification of products of Dirac matrices got stronger in Maple 2021 in several 
ways. As an example, set  as a quantum operator (noncommutative) tensor 

proportional to the commutator of Dirac matrices
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_______________________________________________________

Enter the definition of 

Defined objects with tensor properties

Consider proving the following value for the commutator 

Insert 's definition in this expression

Expand the commutator and all the products
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Proving that, in this expression, the left-hand side is equal to the right-hand side involves 
the simplification of sums of products of four (on the left-hand side) and of two (on the 
right-hand side) Dirac matrices taking into account the algebra rules they satisfy

In Maple 2021, this simplification can be performed in one go by taking the left-hand side 
minus the right-hand side and sending that to the simplifier

0

This simplification can now also be performed in steps. Take the commutator on the left-
hand side of (23)

Although this intermediate result (31) involves products of four Dirac matrices, their 
combination is such that the result can be expressed in terms of products of only two of 
matrices
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This result is different from the expanded form of the right-hand side of (23)

The Simplifier, however, can not only prove that (32) - (33) is equal to zero but can also 
depart from (33) and arrive at (32)

That is so because, in Maple 2021, a new normal form for the ordering in products of 
noncommutative operators got implemented. The computation above also indicates that 
there are two different kinds of simplifications at work here: one that maps a sum or 
products of four Dirac matrices into simpler products of also four matrices, and another 
one that maps onto a sum of products of two Dirac matrices. To see that, consider again 

the expanded form (31) of the commutator 

The default approach maps the sum of products of four Dirac matrices into products of two
Dirac matrices using the algebra rules they satisfy

One can also use those algebra rules to only sort the products with some preferred 
ordering as pivot (new option in Simplify), resulting in products of also four matrices

This result is not just an expansion of (35),
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but the result of sorting first all the products in (35), using the algebra rules 
 and only then expand

Proving identities is a key - sometimes, as in this case related to Dirac matrices - non-
trivial operation. Another way of verifying identities like (23) is to compute all the 
components of the tensorial equation,

each of which is, in turn, a 4 x 4 matrix. If the identity is true, for each value of each of the
four spacetime free indices , we expect that, performing all the matricial 
operations, we get for result a matrix 4 x 4 matrix of zeros. That computation can be 
performed with TensorArray using its option performmatrixoperations

So the identity is true. Note that  resulting matrices. This computation for each 
value of the four spacetime indices can be displayed so compactly because of using the 
option , and repeated elements in a set are automatically removed. 
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Thus, the 256 matrices of zeros, each of which is equal to 0, appear as only one.

As a more challenging computation, less of a black box, one can express everything in 
(41) in terms of Dirac matrices 

For each of the four values of each if the four indices , use now the underlying Dirac
matrices

and compute all of the 4 x 4 x 4 x 4 matrices that result from multiplying the four and two 
Dirac matrices in each term of (43) (that is what TensorArray did, internally, to compute 
the result (42))
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Manipulation and simplification of expressions 
involving non-commutative tensor operators
Significant improvements under the hood happened regarding of simplification in the 
presence of non-commutative tensor operators. The simplifications need to take into 
account commutator rules, symmetries under permutation of indices of tensorial 
subexpressions, and use Einstein's sum rule for repeated indices. Related to that, Maple 
2021 includes relevant enhancements in the Simplify, SubstituteTensor and SortProducts 
commands.

With these developments in place, it is now possible, for example, to systematically 
derive, step-by-step, the SO(4) symmetry of the hydrogen atom and its spectrum entering 
only the main definition formulas, followed by only simplification commands, and without 
using previous knowledge of the result. A presentation of this work is now in the arXiv and 
is submitted for publication in the journal Computer Physics Communications as a novel 
way of tackling these kinds of problems using computers.

In brief, deriving the SO(4) symmetry of the hydrogen atom is about deriving the following 
four commutator rules between its Hamiltonian H , the angular momentum tensor  and 

the Runge-Lenz tensor Zn,

= 0

= 0

=

=

where for hermiticity purpose Lm is defined in quantum mechanics as the symmetrized 

form

Since H commutes with both and Z, defining

these commutation rules can be rewritten as

=
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This set constitutes the Lie algebra of the SO(4) group. As an illustration of the 
computational capabilities in Maple 2021, in what follows we derive the first two of these 
commutators, , departing from basic principles and followed by 

applying only a few simplification commands to equation labels.

Setting the problem
Formulating the problem requires loading the Physics package, and we set the imaginary 
unit to be represented by a lowercase Latin i letter instead of the default uppercase I.

The context for this problem is Cartesian coordinates and a 3D Euclidean space where all 
of  are real objects. We chose lowercase letters to represent tensor indices and 

the use of automatic simplification (i.e., automatically simplify the size of everything being 
displayed)

Next, we set the quantum Hermitian operators (not Z, we derive that property for it further
below) and related commutators:

the dimensionless potential   is assumed to commute with position, not with 

momentum - the commutation rule with pk is derived further below;

the commutator rules between position Xn on the one hand, and linear pk and angular 

momentum Lk on the other hand, are the departure point, entered using the inert form 

of the Commutator command. Tensors are indexed using the standard Maple notation 
for indexation, [].
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Define the tensor quantum operators representing the linear momentum, angular 
momentum and the Runge-Lenz vectors

For readability, avoid redundant display of functionality

The Hamiltonian for the hydrogen atom is entered as

Definition of V(X) and related identities
We use the dimensionless potential 

The gradient of  is 
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where we note that all these commands (including product and power), distribute over 
equations. So that

Equivalently, from (51) one can deduce  that will be used afterwards

The commutation rules between linear and angular momentum
and of the potential V(X)
By definition

so, since the system knows about , we get

To derive the value of , as usual in paper and pencil computations we set pn as a

differentialoperator and introduce an arbitrary test function 

Applying now to  the differential operator pn found in the commutator of the right-

hand side of (56) 

where  is a command of the . The result 
of  is not known to the system at this point. Define then an explicit 

representation for p  as the differential operator in configuration space 
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where in the above  represents the index with which the differential operator 
p  is called.With this definition, the right-hand side of (58)  automatically evaluates to

So that using (53)  and multiplying by , 

from where we get the first commutation rule:

Likewise, from the  form of 

by applying this equation to the test function  we get

In the same way, for   we get
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Adding now these new commutation rules to the setup of the problem, they will be taken 
into account in subsequent uses of Simplify

Undo differentialoperators to work using two different approaches, with and without them.

Commutation rules between the Hamiltonian and each of the 
angular momentum and Runge-Lenz tensors

Departing from the Hamiltonian  (50)  and the definition of angular 

momentum (55) , by taking their commutator we get

That is one of the two commutators we wanted to derive. For the commutator between the
Hamiltonian and Runge-Lenz tensor, start from its definition
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This tensor is Hermitian

Since the system knows about the commutation rule between linear and angular 
momentum,

the expression (75) for Zk can be simplified

and the angular momentum removed from the the right-hand side using (55)
, so that Zk gets expressed entirely in terms of ,  and 

Taking the commutator between (50) , and this expression for Zk we 

have the starting point towards showing that 
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In order to use the identities

we sort the products using the ordering shown in the left-hand sides

And this is the second commutator we wanted to derive.

Functional differentiation and differentiation of 
spinors

In Maple 2021 you can compute derivatives, and functional derivatives of spinor fields 
and with respect to them. 

For illustration purposes set an anticommutative prefix and use lowercase Latin letters to 
represent spinor indices

Load the library of physics types
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Any anticommutative variable with spinor indices is now recognized by the system as a 
Dirac spinor

true

The conjugate, or Dagger too

true

true

To simplify expressions involving  using Einstein's sum rule for repeated indices, 

indicate to the system that a is a tensor

Defined objects with tensor properties

You can now compute derivatives of expressions involving spinors with respect spinors 
according to

Conjugate or Dagger functions are considered independent from the functions they are 
applied on

In addition to standard derivatives, you can now compute functional derivatives with 
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respect to spinor functions. Consider, for example, an interaction Lagrangian where 
 is of anticommutative type, but now a 3/2 spinor field (with one spacetime and one

spinor indices), and in the Lagrangian there is a quantum vector field 

_______________________________________________________

The Lagrangian is

In this Lagrangian,  is a coupling constant,  are the Dirac matrices and  

represents the Dirac conjugate of the  spinor field. The vertex factor in the Feynman 

rules for this Lagrangian can now be computed using functional differentiation using the 
ordering the fields appear in the noncommutative product in (97), that is

Check the indices of both sides of this result

The products in the given expression check ok.

In the following example, the scattering amplitude of a process with two incoming and 
outgoing particles of the  and A types at  tree-level, the vertex factors are computed 
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using functional differentiation as shown above in (98)
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It is possible to functionally differentiate a product of noncommutative functions using 
a different ordering than the one of the product provided that the commutation rules 
between the functions are known. For example, for the Lagrangian L , you can set the 
commutation rules for A  and  as follows, without indicating the functionality, so 

that the rules are valid in general

Then you have, for any X or Y, 

Avoid repeated display of functionality with 

The functional derivatives of  with regards to each of the fields
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New commands ToCovariant and 
ToContravariant
When working with tensors in spaces where the covariant and contravariant tensor's 
components have a different value (the underlying metric is not Euclidean) one frequently 
wants to express formulations with some or all of the tensors's indices expressed either in 
covariant or contravariant form. In previous Maple releases, also in Maple 2021, you can 
raise or lower free indices multiplying by the metric and performing the contraction. That, 
however, involves a whole simplification process not always desired, and does not result in
flipping the character of repeated indices. To handle the whole manipulation operation, in 
Maple 2021 there are two new commands: ToCovariant and ToContravariant.

Examples

Consider the following tensorial expression

_______________________________________________________
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Defined objects with tensor properties

The components of F  are

New in Maple 2021: when you request the contravariant components of a tensor 
definition as the output is expressed using the contravariant components of the 

tensors involved, in this case A

Consider now an expression that has free and repeated indices, for example

Defined objects with tensor properties



> > 

(100)(100)

(104)(104)

(115)(115)

> > 

(2)(2)

(52)(52)

(121)(121)

(12)(12)

> > 

(120)(120)

> > 

> > 

(38)(38)

(75)(75)

(5)(5)

(119)(119)

(117)(117)

(114)(114)

(3)(3)

> > 

> > 

(47)(47)

> > 

(18)(18)

(118)(118)

> > 

(68)(68)

(116)(116)

> > 

(15)(15)

> > 

> > 

(32)(32)

(59)(59)

(21)(21)

(108)(108)

(26)(26)

There are several tensors with covariant indices, and the free and repeated indices are

where we see the free indices are  and , both covariant. To have all the tensors in 
(114) (but for the metric) with all their indices contravariant, use

Note this result is mathematically equal to (114)- all what happened in (116) is that the 
covariant versions were replaced by the contravariant ones at the cost of adding metric 
factors, so

0

Likewise,

This type of manipulation is relevant in different contexts. For example, when computing 
the TensorArray of components of a tensorial expression, that result in expressed using 
the contravariant (or covariant) components of the tensors involved.

You can selectively apply these two commands command using its options , 
for example to have only the index  expressed in contravariant form use

A similar operation, which however results in an expression that is not mathematically 



(100)(100)

(104)(104)

(2)(2)

(52)(52)

(12)(12)

> > 

> > 

> > 

(124)(124)

(38)(38)

(75)(75)

(125)(125)

(5)(5)

(114)(114)

(3)(3)

> > 

> > 

(126)(126)

(47)(47)

(18)(18)

(128)(128)

> > 

(68)(68)

> > 

(15)(15)

> > 

(32)(32)

> > 

(59)(59)

> > 

(21)(21)

> > 

(108)(108)

(26)(26)

(122)(122)

(127)(127)

(123)(123)

equal to the departing one is that where we want to flip the character of the free indices, 
optionally also of the repeated indices. For example, in (114) and (116)  is covariant, 
but suppose we want to raise it turning it contravariant

So now the free indices  and  are both contravariant 

Or, selectively,

Compare (125) with the different forms of the same expression

Weyl scalars, Petrov types and canonical forms 
for tetrads
In spite of recent advances in General Relativity, the computation of Petrov types, Weyl 
scalars and canonical forms for tetrads (mappings between a general spacetime and a 
local Galilean system of references) continue to be key in the classification of solutions to 



(100)(100)

(104)(104)

(114)(114)

(3)(3)

> > 

> > 

(2)(2)

(52)(52)

(47)(47)

> > 

(18)(18)

(12)(12)

> > 

> > 

(68)(68)

(15)(15)

> > 

(38)(38)

(32)(32)

(59)(59)

(75)(75)

(21)(21)

(108)(108)

(26)(26)

(5)(5)

Einstein's equations and for establishing equivalences between two given spacetimes. For 
these purposes, Maple's Physics includes a subpackage, Tetrads, with all the relevant 
related functionality. 

In previous Maple releases, and also in Maple 2021, once the spacetime metric  and 

the tetrad  are set (using Setup), the entering and  returns the 

respective results for that metric and tetrad set. Also, a change in the signature, or using a
textbook reference that shows a tetrad derived for a different signature frequently 
resulted in puzzling situations, where what is expected to be a tetrad does not verify the 
tetrad's defining equations. 

Both situations are addressed in Maple 2021 so that problems with the signature are 
easily detected and easily corrected, and experiment with different forms of the tetrads 
and Weyl scalars can now all be performed without setting the tetrad. 

For these purposes, in Maple 2021:

We added a a new command, WeylScalars, to the Tetrads package;

extended PetrovType and TransformTetrad to handle different forms of the tetrads
even if they are not set;

extended the IsTetrad command to produce helpful and directly usable messages in 
the typical situation where we input what we thing is a correct tetrad, but that is true 
only if we change the signature or the position of the time-like component in the list of 
coordinates;

extended the Redefine command so that it also redefines tetrads according to 
indicated changes in the signature.

Examples

In a recent question in Mapleprimes, one of the spacetime (metric) solution to Einstein's 
equations, from chapter 27 of the book of Exact Solutions to Einstein's equations [1] was 
discussed. One of the issues was about computing a tetrad for the book's solution [27, 37, 
1] such that the corresponding Weyl scalars are in canonical form. 

The Maple 2021 developments in this area allows for clearly reviewing the problem as 
follows.

The starting point is this image of page 421 of the book of Exact Solutions to Einstein's 
equations, formulas (27.37)



(131)(131)

(100)(100)

(104)(104)

(2)(2)

(52)(52)

> > 

(12)(12)

> > 

> > 

> > 

> > 

(38)(38)

> > 

(75)(75)

(5)(5)

(114)(114)

(3)(3)

> > 

> > 

(47)(47)

(130)(130)

(129)(129)

(18)(18)

(68)(68)

(15)(15)

> > 

(32)(32)

(59)(59)

(21)(21)

(108)(108)

(26)(26)

Load the corresponding solution [27, 37, 1] from Maple's database of solutions to 
Einstein's equations

The assumptions on the metric's parameters are

The line element is as shown in the second line of the book's image above

Load Tetrads



(100)(100)

(104)(104)

> > 

> > 

(2)(2)

(52)(52)

(134)(134)

(12)(12)

> > 

> > 

(38)(38)

(75)(75)

(5)(5)

(114)(114)

(133)(133)

(3)(3)

> > 

> > 

> > 

(135)(135)

(132)(132)

(47)(47)

(18)(18)

> > 

(68)(68)

> > 

(15)(15)

> > 

(32)(32)

(59)(59)

(21)(21)

(108)(108)

(26)(26)

The Petrov type of this spacetime solution is

"II"

The null tetrad computed by the Maple system using a general algorithms is

According to the help page TransformTetrad, the canonical form of the Weyl scalars for 
each different Petrov type is

So for type II, when the tetrad is in canonical form, we expect only  and  different 

from 0. For the tetrad computed automatically, however, the scalars are not in canonical 
form:



(100)(100)

(104)(104)

(2)(2)

(52)(52)

(12)(12)

> > 

> > 

> > 

(38)(38)

(75)(75)

(5)(5)

(114)(114)

(3)(3)

> > 

> > 

(136)(136)

(135)(135)

(132)(132)

(47)(47)

(18)(18)

> > 

(68)(68)

> > 

(15)(15)

> > 

(32)(32)

(59)(59)

(21)(21)

(108)(108)

(26)(26)

The question is, thus, how to bring the tetrad  (equation (134)) into canonical form. 

The plan for that is outlined in Chapter 7, by Chandrasekhar, page 388, of the book 
"General Relativity, an Einstein centenary survey", edited by S.W. Hawking and W.Israel. In
brief, for Petrov type II, use a transformation of use  to make , then a 

transformation of  making , finally use a transformation of  making .

For an explanation of these transformations see the help page for TransformTetrad. This 
plan, however, is applicable if and only if the starting tetrad results in , which we 

see in (135) it is not the case, so we need, in addition, before applying this plan, to 
perform a transformation of  making 

In what follows, first we use TransformTetrad with the optional argument canonicalform to 
perform all the calculation in one step. This problem was out of reach in previous Maple 
releases and is now tractable in different ways in Maple 2021. 

Next, we use the prescription, step by step, as outlined in Chapter 7, by Chandrasekhar, 
page 388, of the book "General Relativity, an Einstein centenary survey", edited by S.W. 
Hawking and W.Israel. The possibility of performing a step by step computation as shown 
below is also new in Maple 2021, and illustrates well how to get the result exploiting the 
new, advanced functionality.

All the transformations performed automatically, in one go

To arrive in one go to a tetrad whose Weyl scalars are in canonical form as shown in the 
table above, use the optional argument canonicalform:

The resulting tetrad got assigned to  and is not displayed because of its length:

56845



(100)(100)

(104)(104)

(2)(2)

(52)(52)

(12)(12)

> > 

> > 

(38)(38)

(138)(138)

(75)(75)

(137)(137)

(5)(5)

(114)(114)

(3)(3)

> > 

> > 

(135)(135)

(132)(132)

> > 

(47)(47)

(18)(18)

> > 

(68)(68)

> > 

(15)(15)

> > 

(32)(32)

(59)(59)

(21)(21)

(108)(108)

(26)(26)

New in Maple 2021, the command WeylScalars can compute the Weyl scalars without 
having to set the tetrad (as in ) first. That is convenient to see if the result obtained is 

indeed what we want, even when at this point the tetrad is different from :

So, instead of having to set the tetrad, this new  directly receives  as an 

argument and performs the calculation

We see, comparing with the table before (135), that this is the expected form of these 
scalars, so  is indeed a tetrad in canonical form.

The transformations, step-by-step, leading to the same canonical form (138) of 
the Weyl scalars 

In brief, the plan outlined by Chandrasekhar in Chap.7 is: for Petrov type II, use a 
transformation of  to make , then a transformation of  making , 

finally use a transformation of  making . For an explanation of these 

transformations see the help page for TransformTetrad. The plan is applicable if and only if
the starting tetrad results in , which we see in (138) is not the case, so we need, in 

addition, before following this plan, to perform a transformation of  making 

It is possible to start from the tetrad (134) and the Weyl scalars (135), which however 
have radicals, against readability. Without loss of generality, we use instead, as departing 
tetrad, a version of it free of radicals as shown in the book of solutions to Einstein's 
equations, that is 



(100)(100)

(104)(104)

> > 

(2)(2)

(52)(52)

(12)(12)

> > 

> > 

(142)(142)

> > 

(38)(38)

(75)(75)

> > 

(5)(5)

(114)(114)

(140)(140)

> > 

(3)(3)

(141)(141)

> > 

> > 

(135)(135)

(132)(132)

(47)(47)

> > 

(18)(18)

(143)(143)

(139)(139)

(68)(68)

> > 

(15)(15)

> > 

(32)(32)

(59)(59)

(21)(21)

(108)(108)

(26)(26)

true

You can use the new WeylScalars corresponding to this book's tetrad (139), and see they 
are are free of radicals but not in canonical form, using

Set this tetrad simpler than (137) as the starting point

Step 0

Since in (141) , in this step we use a transformation of , that introduces a 

complex parameter E. To get  any value of E suffices; we use 



(100)(100)

(104)(104)

> > 

(2)(2)

(52)(52)

(147)(147)

(12)(12)

> > 

> > 

> > 

(38)(38)

(75)(75)

> > 

(144)(144)

(5)(5)

(114)(114)

(3)(3)

> > 

> > 

> > 

(135)(135)

(132)(132)

(47)(47)

(18)(18)

(143)(143)

(139)(139)

(146)(146)

> > 

(68)(68)

> > 

(15)(15)

> > 

(32)(32)

(59)(59)

(145)(145)

(21)(21)

(108)(108)

(26)(26)

The new  allows to check the transition to canonical form step by step. For 
example, in this step,  resulted in a tetrad,  as expected

Step 1

Next is a transformation of  to make . For Petrov type II that also implies on 

. This transformation introduces a parameter B (see TransformTetrad) that, 

according to the plan outlined by Chandrasekhar, should be set as one of the two identical 
roots (out of four) of the principalpolynomial. To see the principal polynomial, or, directly, 
its roots you can use the PetrovType command:

"II"

The pair of identical roots is equal to -1



(100)(100)

(104)(104)

(148)(148)

(149)(149)

a. a. 

> > 

> > 

(2)(2)

(52)(52)

(12)(12)

> > 

> > 

> > 

c. c. 

> > 

(38)(38)

(75)(75)

(5)(5)

(114)(114)

(3)(3)

> > 

> > 

(135)(135)

(132)(132)

(47)(47)

(18)(18)

(143)(143)

(150)(150)

(139)(139)

(151)(151)

(68)(68)

> > 

(15)(15)

> > 

(32)(32)

(59)(59)

b. b. 

(21)(21)

(108)(108)

(26)(26)

d. d. 

> > 

So the transformed tetrad  , taken at B equal to this multiple root, is

Check the corresponding Weyl scalars: we now have  and 

Step 2

Next is a transformation of  that makes . This transformation introduces again 

a parameter E, that according to Chandrasekhar's plan can be taken equal to one of the 
roots of Weyl scalar  that corresponds to the transformed tetrad. So we need to proceed 

in three steps:

transform the tetrad introducing a parameter E in the tetrad's components

compute the Weyl scalars for that transformed tetrad

take  and solve for E

apply the resulting value of E to the transformed tetrad obtained in step a.

a. Transform the tetrad and for simplicity take E real



(100)(100)

(104)(104)

> > 

> > 

(2)(2)

(52)(52)

(12)(12)

> > 

> > 

(38)(38)

(75)(75)

(5)(5)

(152)(152)

(114)(114)

(3)(3)

> > 

> > 

(135)(135)

(132)(132)

(47)(47)

(18)(18)

> > 

(143)(143)

(139)(139)

> > 

(151)(151)

(68)(68)

> > 

(15)(15)

(153)(153)

> > 

(32)(32)

(59)(59)

(21)(21)

(108)(108)

(26)(26)

b. Compute  for this tetrad

c. Solve  discarding the case  which implies on no transformation

Warning, solve may be ignoring assumptions on the input 

variables.

d. Apply this result to the tetrad (151). In doing so, do not display the result, just measure
its length (corresponds to two+ pages)



(100)(100)

(104)(104)

> > 

(2)(2)

(52)(52)

(12)(12)

> > 

> > 

> > 

(156)(156)

(38)(38)

(75)(75)

> > 

(5)(5)

(154)(154)

(114)(114)

(155)(155)

(157)(157)

(3)(3)

> > 

> > 

(135)(135)

(132)(132)

(47)(47)

(18)(18)

> > 

(143)(143)

(139)(139)

> > 

(151)(151)

(68)(68)

> > 

(15)(15)

> > 

(32)(32)

(59)(59)

(21)(21)

(108)(108)

(26)(26)

> > 

12553

Check the first two and the last scalars, we expect 

Step 3

Use a transformation of  making . Such a transformation (see TransformTetrad)

changes , where we need to take , and without loss of generality

we can take  Check first the value of  in the last tetrad computed, for that purpose

you can use again the new  without having to set anything before

So, the transformed tetrad  to which corresponds Weyl scalars in canonical form, with 

 and , is

Check this result

true

Compute the scalars



(100)(100)

(104)(104)

> > 

(159)(159)

> > 

(2)(2)

(52)(52)

(12)(12)

> > 

> > 

> > 

> > 

(38)(38)

(75)(75)

(5)(5)

(154)(154)

(158)(158)

(114)(114)

(3)(3)

> > 

> > 

(161)(161)

(160)(160)

(135)(135)

(132)(132)

(47)(47)

(163)(163)

(18)(18)

> > 

(143)(143)

(139)(139)

(151)(151)

(162)(162)

(68)(68)

> > 

> > 

(15)(15)

> > 

(32)(32)

> > 

(59)(59)

(21)(21)

(108)(108)

(26)(26)

> > 

These scalars obtained step-by-step are the same scalars computed in one go in (138)

Changing the signature and redefining tetrads

Finally, consider a change in the signature, from the current value

to (+ - - -)

The tetrad got automatically redefined

It is not equal to (139) anymore



(100)(100)

(166)(166)

(104)(104)

> > 

(2)(2)

(52)(52)

(12)(12)

> > 

> > 

> > 

(167)(167)

(38)(38)

(75)(75)

> > 

(5)(5)

(154)(154)

(158)(158)

(114)(114)

(165)(165)

(3)(3)

> > 

> > 

(135)(135)

(132)(132)

(47)(47)

(163)(163)

(18)(18)

> > 

(143)(143)

(139)(139)

(151)(151)

(68)(68)

> > 

> > 

> > 

(15)(15)

> > 

(32)(32)

(59)(59)

(164)(164)

> > 

(21)(21)

(108)(108)

(26)(26)

Suppose, however, that you have not noticed that the signature is different than in the 
book and input this form (139). In previous Maple releases, IsTetrad will rightly tell 
(163) is not a tetrad because, for the signature set, (163) does not match the tetrads 
definition

How could you discover that the problem with (163) is just a change in the signature and 
the position of the time-like component? New in Maple 2021, the command  now 
analyses the situation before returning false and points out the solution

false

Besides resolving the problem as indicated (you my not want to change the signature), 
also new in Maple 2021, you can resolve the situation directly using Redefine, that now 
also redefines tetrads. You want to redefine (139) from the signature where it is valid, (+ 
+ + -), to the current signature (in such a case you do not need to specify )



(100)(100)

(104)(104)

> > 

c. c. 

(2)(2)

(52)(52)

(12)(12)

> > 

> > 

a. a. 

(167)(167)

(38)(38)

(75)(75)

(5)(5)

(154)(154)

(158)(158)

(114)(114)

(168)(168)

(3)(3)

> > 

> > 

> > 

(135)(135)

(132)(132)

(47)(47)

b. b. 

(163)(163)

(18)(18)

> > 

(143)(143)

(139)(139)

(151)(151)

(68)(68)

> > 

> > 

> > 

(15)(15)

> > 

(32)(32)

(59)(59)

(21)(21)

(108)(108)

(26)(26)

true

This new functionality of Redefine is useful in general, and also to get a simpler tetrad (e.
g. without radicals, as in the above) when you know such a simpler form for any other 
signature, as in this example.

Documentation advanced examples
One of the most important parts of the Physics project is its documentation; the illustration
of the use of the package in different scenarios. The three relevant help pages for that are

The Physics,Examples

The Physics,Tensors

The Physics,Updates

For Maple 2021, the first of these pages got extended with four sections: "Vectors in 
Spherical Coordinates using Tensor Notation", "The equations of motion in curvilinear 
coordinates, tensor notation and Coriolis force", "The EnergyMomentum tensor for the 
Proca Lagrangian" and "The Gross-Pitaevskii field equations for a quantum system of 
identical particles", covering new material in Vector Analysis, Mechanics and Classical Field
Theory.

Miscellaneous
A number of minor changes happened in several places of the Physics library for Maple 
2021, improving performance and the computational experience.

When you set a spacetime metric, 

the matrix form is now automatically shown - there is no need for additionally 
entering  to see it;

the signature in use is shown;

a kind of letter to represent spaceindices is automatically set.



(100)(100)

(104)(104)

> > 

(2)(2)

(52)(52)

(12)(12)

> > 

(169)(169)

> > 

(170)(170)

(167)(167)

(38)(38)

(75)(75)

(5)(5)

> > 

(154)(154)

> > 

(158)(158)

(114)(114)

(168)(168)

(3)(3)

> > 

> > 

(135)(135)

(132)(132)

(47)(47)

(163)(163)

(18)(18)

> > 

(143)(143)

(139)(139)

> > 

(151)(151)

(68)(68)

> > 

> > 

(15)(15)

> > 

(171)(171)

(32)(32)

(59)(59)

(21)(21)

(108)(108)

(26)(26)

Using Setup, you also have the quiet option to avoid verbosity and reproduce the behavior 
of Maple releases previous to 2021:

Note however that, when you load a metric from the database,  a change in sign of the 
signature happens; compare with the one displayed in black above the matrix form of 
g in (168) with the one set now:

Changes like this one in the signature are now always presented on the screen, unless you
explicitly use the quiet option. The same display of the matrix form and signature happens 
when you set the metric using g_; here, e.g. min, or minkowski or Minkowski all serve the 
same purpose

Several enhancements happened in  and 



(100)(100)

(104)(104)

> > 

(173)(173)

(2)(2)

(52)(52)

(175)(175)

(12)(12)

> > 

> > 

(167)(167)

(38)(38)

(75)(75)

> > 

(176)(176)

(5)(5)

(154)(154)

(158)(158)

(114)(114)

> > 

(168)(168)

(172)(172)

(3)(3)

> > 

> > 

(135)(135)

(132)(132)

(47)(47)

(163)(163)

(18)(18)

> > 

(143)(143)

> > 

> > 

> > 

(139)(139)

(151)(151)

(177)(177)

(68)(68)

> > 

> > 

(15)(15)

(174)(174)

> > 

(32)(32)

(59)(59)

(21)(21)

(108)(108)

(26)(26)

> > 

, making the simplification of nested tensor functions, 
including the non-commutative tensorial differential operators, work more efficiently 
and successfully - see related section above.

Independent of the above, several enhancements happened in 
. Consider a typical situation, of a product of 

noncommutative tensorial quantum operators in a Cartesian space

Set the coordinates as quantum operators

_______________________________________________________

In spite of being a product of noncommutative operators, this expression has some 
tensorial symmetries:

The above means (175) is symmetric with respect to exchange of its first and second 
indices, respectively  and , and also under an exchange of , and . Clear the setting of 
X  as a noncommutative quantum operator to continue the presentation

_______________________________________________________



(100)(100)

(104)(104)

> > 

> > 

(2)(2)

(52)(52)

> > 

(12)(12)

> > 

> > 

> > 

(181)(181)

(167)(167)

(38)(38)

(75)(75)

(178)(178)

(5)(5)

(154)(154)

> > 

(158)(158)

(114)(114)

(168)(168)

(182)(182)

(3)(3)

> > 

> > 

(135)(135)

(132)(132)

(47)(47)

(163)(163)

(184)(184)

(18)(18)

> > 

(143)(143)

(139)(139)

(151)(151)

(177)(177)

> > 

(68)(68)

> > 

(183)(183)

> > 

(15)(15)

> > 

> > 

(32)(32)

(59)(59)

(21)(21)

> > 

(108)(108)

(26)(26)

(179)(179)

(180)(180)

Implement tensorial equation substitutions where the left-hand side is of type `+`

Defined objects with tensor properties

In the above,  is a common tensor-factor. Consider then substituting in (180) the 
following subexpression of type `+`

To verify this result swap left-hand side and right-hand side in (181) and substitute back 
into (182), removing , then compare with the starting expression (180)

0

TensorArray now accepts a new listofequations option, consistent with the previously 
existing setofequations. When the left-hand side of the equations returned is matricial, 
then provided the dimension of the matrices can be determined, the right-hand side of 



(100)(100)

(104)(104)

> > 

> > 

(2)(2)

(52)(52)

(12)(12)

(186)(186)

> > 

> > 

> > 

(167)(167)

(187)(187)

(38)(38)

(75)(75)
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(5)(5)
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(158)(158)

(114)(114)
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(3)(3)
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(135)(135)

(132)(132)

(47)(47)
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(18)(18)

> > 

(143)(143)

(139)(139)
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(68)(68)

> > 

> > 

(15)(15)

> > 

(32)(32)

(59)(59)

(21)(21)

(108)(108)

(26)(26)

the equations is the corresponding matrix of zeros.

Change default simplification in TensorArray, from do nothing to normal. This resolves 
the typical situation were we expect zeros in the components of tensorial expressions 
but those zeros are visible only after some form of simplification. You can still use the 
option simplifier to not have any simplification, e.g. simplifier = (u -> u).

Added the keyword freeindices in , to be consistent 
with the implementation of that keyword in 

Greek gliphs, for example `&mu;` and `~&mu;` are now valid tensor indices like mu 
and ~mu. Note however that `&mu;` is not considered equal to mu.

Change in design: tensors that are defined using tensorial equations with tensors in the
right-hand side, when their contravariant form is requested, instead of returning the
covariant form multiplied by the metric to raise the indices, we now raise the indices of 
the tensors of the right-hand side.

Trace is now more context-intelligent: if one side of a relation (equation or inequation) 
is verifiable as matricial, then the other side is considered too; e.g. if the left-hand side 
involves Dirac spinors and the right-hand side does not, when taking the trace the 
right-hand side is considered multiplied by the 4x4 identity matrix. For example,

where the minus sign on the right-hand side of the algebra rule above is due to the 
change in sign in the signature introduced in (169), 

You can verify these tensorial expressions as usual using TensorArray
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> > 

(114)(114)
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(3)(3)
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(18)(18)
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(68)(68)

> > 

> > 

(15)(15)

> > 

(32)(32)

(59)(59)

(21)(21)

(108)(108)

(26)(26)

where on the right-hand sides it is implicit a 4 x 4 identity matrix.

 Extend the definition of the type : any 
anticommutative prefix having at least one spinor index is considered a DiracSpinor. So
it is now sufficient to have a spinor index to be considered a DiracSpinor. This change 
makes room for the case of mixed indices (the happen in several contexts, e.g in 
quantum field models with 3/2 spinor fields). To save having to type long keywords 
repeatedly, use macro

true

There in one new Physics:-Library:-EqualizeRepeatedIndices, to equalize the repeated 
indices in different terms of tensorial expressions, as an first straightforward form of 
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> > 
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> > 
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simplification. This type of equalization also frequently helps to factorize tensorial 
expressions. Take for instance the expression (180)

Some indices can be equalized

This result is factorizable

In Maple 2021 this new routine is automatically used by the Physics Simplify command.

See Also
Index of New Maple 2021 Features, Physics, Computer Algebra for Theoretical Physics,
The Physics project, The Physics Updates


