
Ordinary and Partial Differential Equations
Maple is the world leader in finding exact solutions to ordinary and partial differential 
equations. Maple 2021 extends that lead even further with new algorithms and techniques
for solving more ODEs and PDEs.

For Maple 2021, there are significant improvements in dsolve for the exact solution of 
order linear ODEs using hypergeometric functions. The algorithms implemented are at 

the frontier of the understanding of this problem, and handle classes of extended 
equations with apparent singularities as well as the most common linear equations with 4 
and 5 singularities. 

For ODEs and PDEs, the LieAlgebrasOfVectorFields package in Maple 2021 has a new 
command MapDE , for analyzing the possible linearization of polynomially nonlinear 
equations, and determining the corresponding mapping when it exists, allowing in that 
way for the computation of more approximate and exact solutions. 

The new Student[ODEs] package covers the material in a standard first course in ODEs 
and provides step-by-step tools for solving ODEs as well as interactive visualization.  For 
details, see Student Packages.

Advanced type of Hypergeometric solutions for 2nd order linear ODEs

Linearization of polynomially nonlinear ODE and PDE

Advanced type of Hypergeometric solutions for 
2nd order linear ODEs
When they exist, 2F1, 1F1 and 0F1 hypergeometric solutions for order linear ODEs are 
now computable in a rather general case. An equation with 3 regular singularities and any 
number of apparent singularities can now be solved in terms of 2F1 equations using the 
algorithms presented in (6) and (7). Likewise, an equation with 2 or 1 singularities, one of 
which is irregular, can now be solved in general using 1F1 and 0F1 hypergeometric 
functions using the algorithms presented in (1), (2) and (3). Common equations with up to 
5 regularities (plus any number of apparent singularities) can now be solved using 
mappings and the tables from references (4) and (5). All this significantly extends the 
previous capabilities in solving linear equations, and also of higher order and nonlinear 
ODE and PDE that through a reduction or symmetry process require the solving of 
intermediate order linear ODEs.

The new algorithms are now automatically used by dsolve and also accessible through a 
new DEtools command, hypergeometricsols.
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Examples

Despite the powerful algorithms for hypergeometric solutions of previous Maple releases, 
none of the following examples could be solved. Now they can. This equation admits 2F1 
solutions where the argument is polynomial in x of degree 3

Verify this solution

0

This other equation admits solutions in terms of modified Bessel functions of the first and 
second kind
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Moreover, note that each independent solution involves a linear combination of functions. 
Indeed, while Bessel (or more generally, 0F1) solutions are related to equations with 1 
singularity of irregular kind, this example has other regular singularities:

thus requiring the use of a linear combination of pFq functions to construct a solution. A 
similar situation happens with the next example where, due to the presence of apparent 
singularities, a linear combination of - this time 1F1 - hypergeometric functions (KummerM 
and KummerU) is required to solve the problem

In addition to computing new solutions out of reach in previous releases, when the linear 
ODE is of Heun type, so it has 4 regular singularities or one of its confluent cases, and it 
happens to be one of the special Heun function cases that can be expressible using 
hypergeometric functions, both kinds of solutions are now computable. This equation is of 
the Heun triconfluent type

The algorithms in dsolve perceive that and solve it accordingly
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By using the option of indicating the method, a solution in terms of linear combinations of
Airy functions (of the 0F1) is now also computable

To express this solution in terms of the more general 0F1 form you can use
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A similar situation, this time with regards to this equation of the Heun biconfluent class

The solution is expressible in terms of linear combinations of modified Bessel functions of 
the 1st and 2nd kinds

The following example is of the same kind but more general: it belongs to the Heun 
general class, but again it is one of those special cases where pFq function solutions exist, 
in this case 2F1 with rational coefficients
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Linearization of polynomially nonlinear ODE and 
PDE
A fingerprint of a linear DE is that linear super-position of its solutions yields other 
solutions.  Encoded geometrically this means that the input DE must have a subgroup of 
symmetries corresponding to this super-position symmetry (and in particular be an infinite 
abelian Lie subgroup in the case of linearizable PDE).

IsLinearizable and MapDE leverage the power of the LieAlgebrasOfVectorFields package, 
introduced in Maple 2020, by algorithmically computing and exploiting symmetry group 
properties through their associated Lie algebras.  Lie symmetry groups, when linearized 
about the identity symmetry, yield Lie algebras of vector fields tangent to their one 
parameter group orbits.

This beautiful linearization yields determining systems of linear homogeneous PDE 
(LHPDE) for the components of the associated Lie algebra of vector fields.

Then algorithmic differential reduction and elimination algorithms are applied to these 
linear systems, to find both algebraic (e.g. center, lower central series, etc) and geometric 
(e.g. distribution, invariants, etc) properties of the Lie algebras of vector fields.

The LieAlgebrasOfVectorFields package is a complement to DifferentialGeometry. In 
particular, the LieAlgebras package in DifferentialGeometry enables the flexible 
formulation of geometric problems arising in applications, enabling the user to formulate 
and solve them using exterior differential systems and moving frames while working 
intrinsically on the relevant manifolds. 
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The IsLinearizable command illustrating the existence step of 
MapDE
The IsLinearizable command introduced in Maple 2020 illustrates some basic ideas 
underlying MapDE.  In particular it uses LieAlgebrasOfVectorFields (LAVF) to implement a 
remarkable algorithm introduced by Lyakhov, Gerdt and Michels (2017).

To illustrate it, consider the nonlinear ODE:

To check whether this ODE can be linearized you can use IsLinearizable. First, set up the 
symmetry vector field

Then apply IsLinearizable

true

Here true means that there exists an invertible change of variables that maps the 
nonlinear ODE to a linear ODE.  IsLinearizable is a good example of how LAVF enables the 
efficient computation of geometric information, in this case the existence of a linearization 
map, to determine if more expensive methods can be applied to a problem (in this case to 
determine the linearization). Here we display the simple procedure, which uses the LAVF 
commands SymmetryLAVF, SolutionDimension, DerivedAlgebra and IsAbelian.
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In the procedure above, for our example, n = 3.  SymmetryLAVF sets up the Lie algebra of 
vector fields, and m is the dimension of the Lie symmetry algebra m = 4 = n + 1 .  The 
LAVF instruction IsAbelian(Da) yields true, without determining a basis for the Derived 
Algebra Da.  Only algorithmic differentiations and eliminations of the determining system 
for Da were needed, based in an induced Lie algebra on the space of initial data for Da.

Apply MapDE to 

The IsLinearizable command in the previous section only determines the existence of a 
mapping of an input DE to some (unknown) linear (target) DE.  Here we illustrate how 
MapDE determines more information about the mapping, and in some cases can 
determine the map explicitly.

Applying MapDE to NLODE:

We set the MapDE infolevel to get some information about the main steps of the 
computation:

MapDE: Begin section where we compute sys S' of subalgebra L' of 

L, containing solution of mapping problem. 

MapDE: Single ODE so apply the Lyakhov-Gerdt-Michels ODE Test for

Existence of Linearization

MapDE: Input DE is linearizable by Lyakhov-Gerdt-Michels ODE 

Test: dimL = 4

MapDE: Construct BK map eqns on Tangent Space to Jet Variety.
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MapDE: Mapping equations constructed.

MapDE: Set up ranking and mindim specification for differential-

elimination.

MapDE: In ToLinear and not CK.

MapDE:  Settings for differential-elimination: MinDim = 3 ranking

= [rho[1] xi eta] RifStrategy = ezcriteria = [1 .9]

MapDE: Apply differential-elimination (rifsimp) to Mapping 

Equations.

MapDE: Completed differential-elimination and casesplitting of 

Mapping System. Time in rifsimp = 0.45e-1

MapDE: Existence of linearization was found earlier. Now 

attempting to integrate mapping eqns

MapDE: Try to simplify PhiEqSol by setting values for the unknown

functions, constants etc.

MapDE: Attempted simplification of PhiEq yielded nonzero 

Jacobian, now using simplified form

Here MapDE has carried out the existence step described in the previous section, to 
determine that there exists a mapping [xh = psi(x,u), uh = phi(x,u)] of NLODE to a linear 
ODE.  Then MapDE is guaranteed in theory to return canonical differential equations in phi 
and psi for the mapping MLODE[RedMapDE] subject to the inequality constraints MLODE
[MapDEPivs].  MapDE then uses pdsolve to attempt to integrate those equations to obtain 
an explicit form for the mapping, obtaining in this case:
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The target linear ODE is also obtained:

Even though both NLODE and the considerably simpler linear MLODE can not be explicitly 
solved by dsolve, approximations for a basis of 3 solutions can be found by dsolve/series 
or dsolve/numeric.  In this way the linearity of the target can be exploited to enable a 
general solution to be constructed without further significant computation.

Nonlinear PDE System linearizable by hodograph 
transformation  

We now compute the linearizing mapping and, when possible, also the resulting linear DE 
system, with MapDE

MapDE: Enter MapDE: Planned to have glossary of symbols and their

meaning similar to rifsimp:

MapDE: ID = Initial Data

MapDE: Dim = Dimension

MapDE: DA  = Derived Algebra

MapDE: R  = input DE or its rif-form, Rh = Target DE or its rif-

form

MapDE: S  = DetSys Sym of R, S' = DetSys for SubAlg of Sym of S

MapDE: Input DE of order 1 in 2 dependent variable(s) 2 

independent variable(s) 2 equation(s)

MapDE: Enter Fast Early Algebraic-Geometric Prop Test

MapDE: Begin section where we compute sys S' of subalgebra L' of 

L, containing solution of mapping problem. 
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MapDE: About to enter DerivedAlgebraInf

DerivedAlgebraInf: Enter DerivedAlgebraInf

DerivedAlgebraInf: Lie pseudogroup G of sym of DE: dim(G) = 

infinity So DE is possibly linearizable

DerivedAlgebraInf: Apply rif to commutator DA sys

DerivedAlgebraInf: ID for DA sys =  [[] [xi(x[0] t[0] u[0] v) = 

_F1(v) tau(x[0] t[0] u[0] v) = _F2(v)]]

MapDE: Exited from DerivedAlgebraInf. Time in DerivedAlgebraInf =

.588

MapDE: Construct BK map eqns on Tangent Space to Jet Variety.

MapDE: Mapping equations constructed.

MapDE: Set up ranking and mindim specification for differential-

elimination.

MapDE: In ToLinear and not CK.

MapDE:  Settings for differential-elimination: MinDim = infinity 

ranking = [rho[1] rho[2] xi tau eta beta] RifStrategy = 

ezcriteria = [1 .9]

MapDE:  For a detailed description of these settings see Maple's 

documentation on rifsimp.

MapDE: Apply differential-elimination (rifsimp) to Mapping 

Equations.

MapDE: Completed differential-elimination and casesplitting of 

Mapping System. Time in rifsimp = 2.815

MapDE: After rif ncases = 46

MapDE: Number consistent cases satisfying minimum dim condns 2

MapDE: Multiple   2   cases found. Analyzing cases. 

MapDE: nops(RifMapEqsSys)= 2 ntruecases= 2

MapDE: CaseSelectList = [2]

MapDE: Apply a pure elimination strategy to isolate the target 

and prepare to find the transformations.

MapDE: PsiPhiEqs have triangular structure wrt phi - psi vars

MapDE: Existence of linearization was found earlier. Now 

attempting to integrate mapping eqns

MapDE: Try to simplify PhiEqSol by setting values for the unknown

functions, constants etc.

MapDE: Attempted simplification of PhiEq yielded nonzero 

Jacobian, now using simplified form
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Here MapDE finds an elegant hodograph form for the transformation to a linear system.  
Such hodograph transformations are important in applications, precisely because they 
linearize such problems.  Notice that during the linearization analysis, MapDE detected 
highly non-trivial infinite dimensional Lie pseudogroups which were key to the analysis.

Fast certification of nonlinearizability of the KP Equation 

dimensions:
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MapDE: Enter MapDE: Planned to have glossary of symbols and their

meaning similar to rifsimp:

MapDE: ID = Initial Data

MapDE: Dim = Dimension

MapDE: DA  = Derived Algebra

MapDE: R  = input DE or its rif-form, Rh = Target DE or its rif-

form

MapDE: S  = DetSys Sym of R, S' = DetSys for SubAlg of Sym of S

MapDE: Input DE of order 4 in 1 dependent variable(s) 3 

independent variable(s) 1 equation(s)

MapDE: Enter Fast Early Algebraic-Geometric Prop Test

MapDE: Input R not linearizable since DiffDim(L}= 1  <  2  = 

DiffDim(R))

Although the KP equation has an infinite dimensional Lie pseudogroup of symmetries it is 
not linearizable, since the differential dimension (a measure of size of such pseudogroups) 
is not large enough (not equal to the differential dimension of solutions of the KP equation)
.

To solve the equation in cases like this one, note that despite the non-existence of a
linearizing mapping, the underlying point symmetries of the equation can be used to 
compute invariant solutions. The existence of point symmetries is guaranteed when the 
PDEtools:-DeterminingPDE command returns related infinitesimals different from zero
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Indeed, in this example, infinitesimals depending on three arbitrary functions are 
computable using PDEtools:-Infinitesimals

With the purpose of using these infinitesimals to compute solutions, this general form 
(2.4.5) can be specialized

Using any of the infinitesimals above, for example the first one, we get a solution
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From the form of this solution one can infer this equation also admits travelling wave 
solutions
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