
> >

Language and Programming
Maple 2021 includes the following enhancements to the Maple language and programming
facilities.

Multilevel and conditional next and break
statements

Building Interactive Applications using
DocumentTools:-Canvas

Objects: New calling sequence for methods,
and new overloadable built-in functions

New commands for logic involving
sequences

New options for zip

New options and commands for folding,
scanning, and reducing

Another new option for select, remove, and
selectremove

Creating evenly spaced sequences

ArrayTools

DEQueue

ListTools:-Deal and ListTools:-Slice

PersistentTable

DataFrame and DataSeries now support
entries and indices

Units:-Split

Log function calling sequences

CodeTools extensions

Additional improvements

Multilevel and conditional next and break
statements
Maple's next and break statements provide options to influence loop iteration, ending a
single iteration of a loop or a whole loop early. They support new features in Maple 2021.

You can now specify which nested loop it is that you want to break out of early when the
condition is met. This is called a multi-level break or next statement. It works as follows:

for i to 3 do

 for j to 3 do

 for k to 3 do

 if (i, j, k) = (2, 2, 2) then

 printf("now executing break:\n");

 break j;

 end if;

 printf("%d, %d, %d\n", i, j, k);

> >

 end do;

 printf("end of j-iteration\n");

 end do;

 printf("end of i-iteration\n");

end do:

1, 1, 1

1, 1, 2

1, 1, 3

end of j-iteration

1, 2, 1

1, 2, 2

1, 2, 3

end of j-iteration

1, 3, 1

1, 3, 2

1, 3, 3

end of j-iteration

end of i-iteration

2, 1, 1

2, 1, 2

2, 1, 3

end of j-iteration

2, 2, 1

now executing break:

end of i-iteration

3, 1, 1

3, 1, 2

3, 1, 3

end of j-iteration

3, 2, 1

3, 2, 2

3, 2, 3

end of j-iteration

3, 3, 1

3, 3, 2

3, 3, 3

end of j-iteration

end of i-iteration

When the break j statement is executed, Maple immediately ends the loop with j as the
loop variable. Instead of specifying the loop variable, you can also specify a positive

> >

> >

integer N: this ends the Nth innermost loop. The previous example could equivalently be
specified as break 2. Using an integer parameter instead of the loop variable is necessary
if the loop you want to terminate does not have a loop variable.

The 'simple' break statement without any arguments, the only version that existed before
Maple 2021, is equivalent to break 1.

The next statement also accepts a name or integer to indicate which loop iteration to
terminate. We can modify the previous example as follows:

for i to 3 do

 for j to 3 do

 for k to 3 do

 if (i, j, k) = (2, 2, 2) then

 printf("now executing next:\n");

 next j;

 end if;

 printf("%d, %d, %d\n", i, j, k);

 end do;

 printf("end of j-iteration\n");

 end do;

 printf("end of i-iteration\n");

end do:

1, 1, 1

1, 1, 2

1, 1, 3

end of j-iteration

1, 2, 1

1, 2, 2

1, 2, 3

end of j-iteration

1, 3, 1

1, 3, 2

1, 3, 3

end of j-iteration

end of i-iteration

2, 1, 1

2, 1, 2

2, 1, 3

end of j-iteration

2, 2, 1

now executing next:

2, 3, 1

> >

> >

2, 3, 2

2, 3, 3

end of j-iteration

end of i-iteration

3, 1, 1

3, 1, 2

3, 1, 3

end of j-iteration

3, 2, 1

3, 2, 2

3, 2, 3

end of j-iteration

3, 3, 1

3, 3, 2

3, 3, 3

end of j-iteration

end of i-iteration

This differs from the previous example in that it continues to the next iteration of the loop
over j, rather than terminating it entirely.

Another new feature of both statements is that you can append a condition to a break or
next statement, separated by the keyword if. This means that the statement is executed
only if the condition is true. This feature can be used with simple and multi-level break and
next statements. It is a convenient shorthand that we could have used in the examples
above if we omit the printing of "now executing break":

for i to 3 do

 for j to 3 do

 for k to 3 do

 break j if (i, j, k) = (2, 2, 2);

 printf("%d, %d, %d\n", i, j, k);

 end do;

 printf("end of j-iteration\n");

 end do;

 printf("end of i-iteration\n");

end do:

1, 1, 1

1, 1, 2

1, 1, 3

end of j-iteration

1, 2, 1

> >

1, 2, 2

1, 2, 3

end of j-iteration

1, 3, 1

1, 3, 2

1, 3, 3

end of j-iteration

end of i-iteration

2, 1, 1

2, 1, 2

2, 1, 3

end of j-iteration

2, 2, 1

end of i-iteration

3, 1, 1

3, 1, 2

3, 1, 3

end of j-iteration

3, 2, 1

3, 2, 2

3, 2, 3

end of j-iteration

3, 3, 1

3, 3, 2

3, 3, 3

end of j-iteration

end of i-iteration

Building Interactive Applications using
DocumentTools:-Canvas
The DocumentTools package, which provides tools for creating documents and interactive
applications programmatically, has been extended in Maple 2021. The new Canvas
subpackage provides a framework for Maple users to easily build applications where the
number of required input fields is not known in advance. The user can create as many
input fields as they need as they use the application, and Maple looks after the details of
creating and extracting the information from those fields for you. The new SolvePractice
command is a built-in tool that uses the canvas framework in this way. A canvas can also
be used to create Maple Learn content in Maple, and then share it through Maple Learn.
For details, see Maple Learn Content Tools.

> >

> >

> >

(4.1)(4.1)

> >

Objects: New calling sequence for methods, and
new overloadable built-in functions
When using objects in Maple, you can call methods in various ways: if you want to call a
method m of an object o with extra arguments a, b, c, then before Maple 2021, you were
able to make this call as m(o, a, b, c), function:-m(o, a, b, c), or o:-m(o, a, b,
c). All of those options are of course still available, but Maple 2021 introduces a new,
message passing-style, calling mechanism: o:-m(a, b, c). Note the absence of o as a
parameter. This is only possible if the parameter to be omitted from the calling sequence
is named _self. For details, see object/methods.

The built-in functions entries and indices, and the new built-in function xormap (see
below), now support being overloaded by objects. For details, see object/builtins.

New commands for logic involving sequences
The new xormap command is analogous to the previously existing andmap and ormap
commands: it applies a predicate to all operands of an expression and returns the
exclusive or of these predicates' results.

xormap(type, [1,2,3,4,5], 'even');

false

There are also new commands andseq, orseq, and xorseq, which are similar. Instead of
applying a predicate to all operands of an expression, they operate on a sequence of
Boolean expressions (at least conceptually; no expression sequence is actually generated).
If the values you want to operate on are not already the operands of an expression, then
this is typically more convenient and more efficient than using the equivalent andmap,
ormap, and xormap commands. (Conversely, if the values you want to operate on are
already the operands of an expression, then it is typically more convenient and efficient to
use the latter commands.)

New options for zip
The zip command applies a function to pairs of values from two containers. It has two new
options.

The evalhf option instructs Maple to evaluate the function using the evalhf subsystem. It
applies only when the two container arguments are rtables of datatype float[8] or complex
[8]. This yields a boost in execution speed and a reduction in memory used.

N := 10^6:

u := Vector(N, i -> i, datatype=float[8]):

v := Vector(N, i -> N-i, datatype=float[8]):

f := (x, y) -> arctan(2*x, y):

(5.3)(5.3)

> >

(5.2)(5.2)

> >

(5.1)(5.1)

> >

CodeTools:-Usage(zip(f, u, v));

memory used=227.19MiB, alloc change=144.00MiB, cpu time=2.53s,

real time=2.00s, gc time=1.07s

CodeTools:-Usage(zip[evalhf](f, u, v));

memory used=7.63MiB, alloc change=7.63MiB, cpu time=220.00ms,

real time=222.00ms, gc time=0ns

The inplace option applies only when the two container arguments are rtables of the
same size, storage, and data type. When this is used, the first container argument is
modified in-place, instead of creating a new container to hold the result. This yields

(5.3)(5.3)

(6.2)(6.2)

> >

> >

> >

(6.3)(6.3)

(6.4)(6.4)

> >

(5.1)(5.1)

> >

> >

(6.1)(6.1)

> >

savings in the amount of memory used, especially when combined with the evalhf option.

CodeTools:-Usage(zip[evalhf,inplace](f, u, v));

memory used=3.05KiB, alloc change=0 bytes, cpu time=220.00ms,

real time=222.00ms, gc time=0ns

New options and commands for folding,
scanning, and reducing
The commands map, seq, select, remove, and selectremove now each have three new
options for combining the resulting expressions using a specified function, called fold,
reduce, and scan.
With the fold option, you specify a function F to apply and an initial value x. Conceptually,
Maple initializes an internal variable v := x. For every (non-NULL) value y that the five
commands above generate, Maple then runs v := F(v, y). The final value of v is
returned. Here is an example:

select(type, [22,33,44,55,66,77], 'odd');

select[fold=(F,x)](type, [22,33,44,55,66,77], 'odd');

select[fold=(igcd, 0)](type, [22,33,44,55,66,77], 'odd');

11

map[fold=(F, x)](g, [22,33,44,55,66,77]);

(6.7)(6.7)

(5.3)(5.3)

> >

> >

> >

> >

> >

(6.5)(6.5)

(6.10)(6.10)

(6.12)(6.12)

(6.6)(6.6)

> >

(6.8)(6.8)

(6.9)(6.9)

(6.11)(6.11)

> >

> >

> >

(5.1)(5.1)

> >

> >

> >

The reduce option is very similar. The only difference is initialization: you do not specify x,
and v is instead initialized to the first value that the command generates (and Maple skips
application of F for that first value). If no value is generated, Maple returns undefined.

select[reduce=F](type, [22,33,44,55,66,77], 'odd');

select[reduce=igcd](type, [22,33,44,55,66,77], 'odd');

11

map[reduce=F](g, [22,33,44,55,66,77]);

The scan option is similar to reduce, but it returns all intermediate values generated.

select[scan=F](type, [22,33,44,55,66,77], 'odd');

select[scan=igcd](type, [22,33,44,55,66,77], 'odd');

map[scan=F](g, [22,33,44]);

These new options allow for performance improvements that can be significant. Suppose
we have a long list of integers and we want to add the even ones.

r := rand(-10^6 .. 10^6):

L := [seq(r(), 1 .. 10^6)]:

CodeTools:-Usage(add(select(type, L, even)), iterations=10);

memory used=11.45MiB, alloc change=72.54MiB, cpu time=124.00ms,

real time=119.00ms, gc time=9.60ms

684462136

CodeTools:-Usage(select[reduce=`+`](type, L, even), iterations=10)

;

The second call takes about half the time that the first call takes, but more importantly, it
uses only a tiny fraction of the memory.

memory used=0.68KiB, alloc change=0 bytes, cpu time=76.00ms, real

time=81.00ms, gc time=0ns

684462136

The new command reduce applies a specified reduction argument to the operands of an

> >

> >

(5.3)(5.3)

(7.3)(7.3)

> >

> >

(6.14)(6.14)

> >

> >

(7.1)(7.1)

(6.15)(6.15)

> >

(5.1)(5.1)

(7.2)(7.2)

(6.13)(6.13)

> >

expression. Calling reduce(f, expr) is equivalent to seq[reduce=f](i, i = expr), but
more convenient and efficient.

reduce(F, [33,55,77]);

reduce(igcd, [33,55,77]);

11

The scan option has slightly simpler syntax than for the five existing commands, but the
result is similar.

reduce[scan](igcd, [33,55,77]);

Finally, the ArrayTools package has two new commands, ReduceAlongDimension and
ScanAlongDimension, which do very similar things, but only for rtables and with some
options for specialized cases, such as setting the data type of the resulting rtable. They
are discussed below, in the section about that package.

Another new option for select, remove, and
selectremove
The select, remove, and selectremove commands are discussed above as receiving new
options for folding, scanning, and reducing. They have another new option in Maple 2021.

Before Maple 2021, the selecting function submitted to these commands had to accept as
its first argument the operands from the expression one is selecting from. In Maple 2021,
you can use selecting functions that accept these operands as a different argument by
using an integer index to the command. For example, if you have a set of types, and you
want to know which of these types a given expression has, you can do that as follows:

expr := sqrt(2);

types := {numeric, radical, constant, function, complex,

complexcons};

applicable, not_applicable := selectremove[2](type, expr, types);

Creating evenly spaced sequences
The seq command has a new option, 'numelems', which allows you to specify the number
of elements in a range. It avoids roundoff error, ensures that the endpoint is attained and
correctly intersperses the values.

> >

(5.3)(5.3)

> >

> >

> >

(8.2)(8.2)
> >

> >

(9.1)(9.1)

> >

(5.1)(5.1)

(8.1)(8.1)

(9.2)(9.2)

> >

(9.3)(9.3)

> >

seq(1..100, numelems=4);

seq(1.1 .. 9.3, numelems = 27);

ArrayTools
The new IsMonotonic command in ArrayTools is used to determine if all, or a segment of,
values in a 1-D list or container are monotonic (increasing, non-decreasing, decreasing,
non-increasing). For example:

with(ArrayTools):

A := Array([2, 3, 4, 5, 4, 3, 4, 5, 6, 6]);

dataplot(A, view = [0 .. 10, 0 .. 10], color = blue);

IsMonotonic(A, direction = increasing, strict = false);

false

IsMonotonic(A, .. 4, direction = increasing, strict = true);

> >

(5.3)(5.3)

> >

(9.8)(9.8)

(9.4)(9.4)

> >

> >

(9.6)(9.6)

> >

(9.5)(9.5)

> >

(5.1)(5.1)

(8.1)(8.1)
> >

> >

(9.3)(9.3)

(9.7)(9.7)

true

IsMonotonic(A, 4 .. 6, direction = decreasing, strict = true);

true

IsMonotonic(A, 6 .. -1, direction = increasing, strict = true);

false

IsMonotonic(A, 6 .. -1, direction = increasing, strict = false)

;

true

The new command GeneralInnerProduct computes the general inner product of two
rtables. This operation could be defined by taking the standard definition of a (real) inner
product and replacing multiplication and addition with custom functions. One possible
application is in so-called max-plus algebras (also known as tropical matrix algebras). In
these algebras over the real numbers together with the symbol , the max-operator
assumes the role of addition and regular addition assumes the role of multiplication. They
are useful, for example, in determining the value of walking the optimal path through a
deterministic Markov decision process. Here is an example of a tropical matrix
multiplication:

m1, m2 := LinearAlgebra:-RandomMatrix(4), LinearAlgebra:-

RandomMatrix(4):

m1[2,4] := -infinity:

m2[3,3] := -infinity:

m1, m2;

m12 := GeneralInnerProduct(m1, max, `+`, m2);

In this result, the top left entry is computed by pairing the entries of the first row of
with those of the first column of , taking the sum of each pair. The resulting entry is
then the maximum among these four sums.

The trace of a matrix is defined as the sum of its diagonal entries; in the max-plus algebra,
this "sum" is computed using the max-operator, for example, as follows:

(9.13)(9.13)

(5.3)(5.3)

> >

> >

> >

(9.11)(9.11)

(9.9)(9.9)

> >

(9.12)(9.12)

(5.1)(5.1)

(8.1)(8.1)

> >

> >

> >

(9.10)(9.10)

> >

(9.3)(9.3)

tm12 := max(LinearAlgebra:-Diagonal(m12));

It is well known that the trace of a product of matrices does not depend on the order of
multiplication. The proof of this theorem works in any algebra over a commutative ring,
such as the max-plus algebra. Consequently, while the individual diagonal elements of

 and are different, their maximal diagonal element is the same:

m21 := GeneralInnerProduct(m2, max, `+`, m1);

tm21 := max(LinearAlgebra:-Diagonal(m21));

There is a similar GeneralOuterProduct command that computes the general outer
product. The commands SuggestedDatatype, SuggestedOrder, and SuggestedSubtype are
used in these two commands, but they could also be useful by themselves for users
writing similar commands.

Another new ArrayTools command is called ScanAlongDimension. It is very similar to the
new reduce command with the scan option (discussed above), with some options that can
be used in specialized cases. It can be used to compute a property of, say, each row of a
matrix, returning all intermediate results together with the final result. For example, if you
need to access all strings made by concatenating strings from the first few entries of a
matrix row, you could use this command, as follows.

m := Matrix(3, 5, (i, j) -> StringTools:-Random(2, 'alpha'));

ScanAlongDimension(cat, m, 2);

To do the same for each column, you would use the following command.

ScanAlongDimension(cat, m, 1);

(9.14)(9.14)

(9.13)(9.13)

(9.16)(9.16)

(5.3)(5.3)

> >

> >

> >

> >

> >

(9.15)(9.15)

(9.9)(9.9)

(5.1)(5.1)

> >

(8.1)(8.1)
> >

(9.3)(9.3)

> >

There is a similar command, ReduceAlongDimension, similar to the new reduce command
without the scan option, which will give you the last entry of each row or column in these
examples.

ReduceAlongDimension(cat, m, 2);

ReduceAlongDimension(cat, m, 1);

These examples can also be done by the reduce command, but if one wants to set, for
example, the data type of the resulting rtable, that can only be done using the ArrayTools
commands. Consider, for example, the following case:

m := Matrix(5, (i, j) -> trunc(i*5/4+j/2-1), datatype=integer[1])

;

If we want to create, for each column, the number formed by concatenating its digits, we
cannot store the result as an integer[1] value. If we try, we get the following error
message:

ReduceAlongDimension((i,j) -> 10*i+j, m, 1);

Error, (in ArrayTools:-ReduceAlongDimension) unable to store

'2345' when datatype=integer[1]

We can fix this by specifying a more suitable data type, as follows.

ReduceAlongDimension((i,j) -> 10*i+j, m, 1, 'datatype' = 'integer'

[2]);

(9.13)(9.13)

> >

(5.3)(5.3)

> >

> >

(10.1)(10.1)
> >

(10.2)(10.2)

> >

> >

> >

> >

(10.4)(10.4)

(10.5)(10.5)
> >

> >

(11.2)(11.2)

(10.3)(10.3)

(9.9)(9.9)

(11.1)(11.1)

(5.1)(5.1)

(8.1)(8.1)

> >

> >

(9.3)(9.3)

DEQueue
DEQueue provides a means to construct a double-ended queue. A double-ended queue
supports efficiently adding and removing entries from both the front and the back.

dq := DEQueue(4,5,6);

push_back(dq, 7);

push_front(dq, 3);

pop_back(dq);

7

pop_front(dq);

3

These operations also allow use of the DEQueue as an efficient queue or stack.

Many built-in functions, such as map and select, accept DEQueues. They, and other
DEQueue-specific commands, are listed on the DEQueue help page.

ListTools:-Deal and ListTools:-Slice
The new Deal command in the ListTools package is similar to Slice, in that a list (or any 1-
D container) is sliced into sublists (or sub-containers) differing in size by at most one, but
the slices are formed in a manner analogous to dealing a deck of cards (the list) into hands
(the sub-lists). For example:

with(ListTools):

Deck := ["1C", "9S", "4S", "AS", "QH", "6S", "1D", "2S", "JS",

"QS", "4H", "9C", "4C", "1S", "6H", "KC", "2C", "4D", "8D", "7C"]

;

Deal(Deck, 4);

The Deal command can return specific sublists, too, using the optional handsreturned
argument:

> >

(9.13)(9.13)

(5.3)(5.3)

(11.4)(11.4)

> >

(12.1)(12.1)

> >

> >

> >

> >

> >

> >

(12.2)(12.2)

(11.3)(11.3)

> >

> >

(9.9)(9.9)

> >

(12.3)(12.3)

(5.1)(5.1)

(8.1)(8.1)

> >

> >

> >

(9.3)(9.3)

> >

> >

Deal(Deck, 4, 4);

Deal(Deck, 4, [2, 3]);

Furthermore, the Slice command has been updated to support 1-D containers that are
not lists, and has a new optional slicesreturned argument.

PersistentTable
The new PersistentTable package provides a connection object that behaves somewhat
like a table, except it is (by default) backed by a file containing an SQLite table. As a
consequence, any information stored in the table persists when Maple is shut down or
restarted. Furthermore, there is some extra functionality for searching through the stored
information.

with(PersistentTable):

The style option specifies the layout of the table. A persistent table with the following
style associates one value with each specified key. For simplicity, we demonstrate here a
table stored in memory, without a backing file.

fruits := Open(":memory:", style = [key :: anything, value ::

anything]);

fruits[pear] := peer:

fruits[apple] := appel:

fruits[banana] := banaan:

fruits[orange] := sinaasappel:

fruits[pear], fruits[banana];

Get(fruits, [apple]);

appel

You cannot reference a key that has not been assigned: that leads to the following error.

fruits[grape];

Error, bad index into PersistentTable

Get(fruits, [grape]);

Error, (in PersistentTable:-Get) bad index into PersistentTable

(9.13)(9.13)

(5.3)(5.3)

> >

> >

> >

> >

> >

> >

(13.1)(13.1)

> >

> >

(13.2)(13.2)

(12.5)(12.5)

(11.3)(11.3)

(12.6)(12.6)

(12.4)(12.4)

(9.9)(9.9)

> >

> >

(5.1)(5.1)

(12.7)(12.7)

(8.1)(8.1)
> >

> >

> >

(9.3)(9.3)

> >

Instead, you can use the MaybeGet command to retrieve a value if a corresponding key
exists, or a default value if it doesn't.

MaybeGet(fruits, [grape], unknown);

unknown

MaybeGet(fruits, [orange], unknown);

sinaasappel

Close(fruits);

Tables with integer, float, or boolean columns support more complicated types of queries.
They can also use an index to speed up such queries.

tbl := Open(":memory:", prefix = "example2", style = [n1 ::

integer, n2 :: integer, a :: float, primarykey = 2, 'index'(n2, a)

]);

for i to 10 do

 for j to 10 do

 tbl[i, j] := rand(0. .. 1.)();

 end do;

end do:

GetAll(tbl, n2 = 2, a > 0.5);

DataFrame and DataSeries now support entries
and indices
The DataFrame and DataSeries objects now support the entries and indices commands.

restart;

ds := DataSeries([4, 5, 6], labels=[A, B, C]);

df := DataFrame(Matrix(3, (i, j) -> i-2*j), rows=[A, B, C],

columns=[a, b, c]);

> >

(9.13)(9.13)

(5.3)(5.3)

> >

> >

(13.5)(13.5)

(14.3)(14.3)

> >

> >

(13.3)(13.3)

(13.6)(13.6)

> >

(14.4)(14.4)

(14.2)(14.2)

> >

> >

(13.2)(13.2)

(14.1)(14.1)

(11.3)(11.3)

> >

(13.4)(13.4)

(12.4)(12.4)

> >

(9.9)(9.9)

(5.1)(5.1)

> >

(8.1)(8.1)
> >

(9.3)(9.3)

> >

entries(ds, nolist);

entries(ds, pairs);

indices(df);

indices(df, pairs);

Units:-Split
The Units:-Split command takes an expression consisting of an optional coefficient and an
optional unit, and returns these two parts separately (or optionally, only one of the two).

c1, u1 := Units:-Split(5*Unit(m/s^2));

c2, u2 := Units:-Split(Unit(m/s^2));

c3, u3 := Units:-Split(5);

Units:-Split(5*Unit(m/s^2), output=unit);

Log function calling sequences
There are two new ways to use log functions with a particular base. It has always been
possible to use the calling sequence or to get the logarithm

of with base . Maple 2021 adds the equivalent calling sequence ,

(9.13)(9.13)

(5.3)(5.3)

> >

> >

> >

> >

> >

(15.3)(15.3)

> >

(13.2)(13.2)

(11.3)(11.3)

(12.4)(12.4)

> >

(9.9)(9.9)

(16.1)(16.1)

(5.1)(5.1)

> >

(8.1)(8.1)

> >

(15.2)(15.2)

> >

(9.3)(9.3)

(15.1)(15.1)

and for the case , you can now also use .

log[3](243), log[2](1024), log[a](a^3) assuming a > 0;

log(243, 3), log(1024, 2), log(a^3, a) assuming a > 0;

log2(1024);

10

CodeTools extensions
The CodeTools:-RecursiveMembers command returns a list of all members of a module
and its submodules.

CodeTools:-RecursiveMembers(CodeTools:-Profiling:-Coverage,

output=members);

The CodeTools:-Profiling:-Coverage:-TestCoverageWorksheet command generates a
worksheet that helps ensure good test coverage for Maple code you develop. By default, it
creates and opens a separate worksheet, but with the following options, it inserts the
worksheet contents into the current worksheet, which makes it easier to demonstrate the
command in this worksheet. Everything from the following command until the end of the
section is part of the generated worksheet, which is intended to test coverage for a
package called MyNewPackage, by running tests called a.tst and b.tst.

The CodeTools:-TestFailures command, also used below, reports the tests that have failed.

CodeTools:-Profiling:-Coverage:-TestCoverageWorksheet

(MyNewPackage, {"a.tst", "b.tst"}, newsheet=false, insert);

restart;

all_entries := CodeTools:-RecursiveMembers(MyNewPackage,

'output'='members'):

procs := select(type, all_entries, procedure);

map(CodeTools:-Profiling:-Profile, procs):

currentdir

(9.13)(9.13)

(5.3)(5.3)

> >

> >

> >

> >

(13.2)(13.2)

(11.3)(11.3)

(12.4)(12.4)

(9.9)(9.9)

(5.1)(5.1)

(8.1)(8.1)
> >

(9.3)(9.3)

("/home/epostma/work_home/sbox/mnl/help/Maplesoft/updates/Maple202

1/more"):

CodeTools:-Test(1, 0, 'label'="next test file: a.tst", 'quiet',

'boolout'):

read "a.tst";

CodeTools:-Test(1, 0, 'label'="next test file: b.tst", 'quiet',

'boolout'):

read "b.tst";

#map(showstat, procs):

map(CodeTools:-Profiling:-Coverage:-Print, procs):

map2(printf, "%s\n", CodeTools:-TestFailures()):

Additional improvements
Maple 2021 includes additional improvements for programming.

The subs command has a member option to limit substitutions to the top-level entries of a
container.

The trace command has a new statements option to limit the information shown during
execution of a traced procedure to only procedure entry and exit.

evalhf[hfloat] returns a hardware float instead of converting the result to software
floating-point, as evalhf typically does.

You can now use the :: operator to assert a type on the control variable of a for loop. See
coloncolon.

The exports command now supports options all, type, and method. In particular, exports
(m, method) returns the callable exports of a module m.

